CONTENTS

1.	IN	FRODUCTION	1
	1.1	Objectives	1
	1.2	Structural Safety	4
		Load Factors	6
	1.3	Steps in Design Process	8
		Design Philosophy	10
	1.4	Calculation Accuracy	11
	1.5	Short Procedures	16
	1.6	Properties of Concrete	18
		Reinforced Concrete	18
		Concrete	19
		Compressive Strength	19
		Stress-Strain Behavior	21
		Modulus of Elasticity	21
		Creep	22
		Shrinkage	23
		Tensile Strength	24
		Shear Strength	25
	1.7	Properties of Reinforcing Steel	26
	1.8	Cover and Spacing of Reinforcement	27
2.	BE	AM FLEXURE	31
	2.1	Objectives	31
	2.2	Rectangular Beam Analysis	31
		Rectangular Beams	32
		Minimum Reinforcement	34
		Balanced Beam	35
	2.3	T-Beam Analysis	36
	2.4	Doubly Reinforced Beam Analysis	39
	2:5	Design Procedures	43
		Determining Tension Steel Area (As)	43
		Checking Concrete Strength	44
		Determining Compression Steel Area (A's)	45

	2.6 Bar Selection	51
	Crack Control	53
3.	ONE-WAY SLAB FLEXURE	58
	3.1 Objectives	58
	3.2 Solid Slabs	59
	Bar Selection	61
	Crack Control	62
	Temperature Reinforcement	62
	Transverse Reinforcement	65
	Irregular Slabs	65
	Stair Slabs	65
	3.3 Joists	69
	Bar Selection	73
4.	TWO-WAY SLAB FLEXURE	76
	4.1 Objectives	76
	4.2 Description	76
	4.3 Structural Behavior	81
	4.4 Design Procedures	86
	4.5 Direct Design Method (DDM)	91
	Procedure 1 (DDM)	92
	Procedure 2 (DDM—Short)	97
	4.6 Equivalent Frame Method (EFM)	112
	Procedure 3 (EFM)	113
	4.7 Other Methods	114
	ACL 318-63—Method 2	114
	4.8 Special Problems	116
	Progressizie Collabse	116
	Waffle Slabs	119
	Slah Corner Reinforcement	120
	Stud Gorner Reinforcement	100
5.	ANCHORAGE AND BAR DEVELOPMENT	123
	5.1 Objectives	123
	5.2 Introduction	123
	5.3 Splices	127
	Splices in Column Vertical Reinforcement	129
	Splices in Flexural Reinforcement	132
	Splices in Temperature Reinforcement	135
	Splices in Welded Wire Fabric	136
	5.4 Anchorage and Bar Cutoff in	
	Flexural Members	136
	Top Bars	137
	Bottom Bars	139
	Two-Way Slab Bars	143
	Siteral Bars	143

		Contents	XV
	Other Anchorages		144
	5.5 Hooks		145
	3.3 1100K3		115
6	SHEAR AND TORSION IN BEAMS		148
0.	6.1 Objectives		148
	6.9 Shear behavior		149
	6.3 Shear and Axial Loads		154
	6.4 Slabs and Shallow Beams		154
	Shear Reinforcement		159
	Skip-Joists		164
	6.5 Deep Beams		165
	Design Procedure		167
	6.6 Shear Friction		176
	6.7 Torsion	i	179
	Torsion Reinforcement		183
	Design Procedures		187
	6.8 Shear Walls		199
	6.9 Brackets and Corbels		195
	0.5 Drackets and Corbeis		155
7.	SHEAR AND TORSION IN TWO-WAY SLABS		200
	7.1 Objectives		200
	7.2 Shear Strength of Plain Concrete		200
	Openings in Slabs		202
	Waffle Slabs		204
	7.3 Transfer of Moment Between Slab and Column		204
	7.4 Slab Shear Reinforcement		212
	Shear Reinforcement Consisting of Bars or Wires		213
	Shear Reinforcement Consisting of Steel Sections		215
	, <u> </u>		
8.	DEFLECTION		220
	8.1 Objectives		220
	8.2 Deflection Behavior		220
	Deflection Limits		222
	8.3 Continuity		222
	Cantilevers		225
	8.4 Moment of Inertia		226
	Gross Section, (Uncracked I_{g})		227
	Cracked Section, (Icr)		228
	Effective Moment of Inertia (I_e)		229
	Variation in Moment of Inertia		229
	Torsional Rotation and Deflection		231
	8.5 Calculation Procedures		234
	Indirect Calculation		235
	Simple Calculation		236
	Normal Calculation		237
	Extended Calculation		238

	Two-Way Slah Systems		920
8.6	Reducing Deflection		239
			410
9.	COLUMNS		252
	9.1 Objectives	1	252
	9.2 Column Behavior		253
	9.3 Analysis of Cross Section		259
	Maximum Axial Load		259
	Minimum Eccentricity		260
	Balanced Strain Conditions		265
	Capacity Controlled by Compression		267
	Capacity Controlled by Tension		267
	Transition in Strength Reduction Factor		270
	Approximate Interaction Diagrams		270
	Biaxial Bending		273
	9.4 Slenderness Effects		277
	Strength Reduction Method		290
	Moment Magnifier Method		290
	Second-Order Analysis		299
	9.5 Composite Columns		299
	9.6 Design Considerations		301
	Minimum and Maximum Dimensions		301
	Irregular Columns		302
	Selection of Concrete Strength		302
	Ties		304
	Spirals		305
	Selection of Tied Versus Spiral Reinforcement		306
	Design Procedures		307
10.	JOINTS		310
	10.1 Objectives		310
	10.2 Column Joints		311
	Foundation-Column Joint		311
	Transmission of Column Load Through Floor		314
	Bar Arrangement		315
	Anchorage of Flexural Bars		318
	Concrete Stress in Beam-Column Joints		322
	Offset Connections		322
	Composite Columns		323
	10.3 Other Monolithic Joints		323
	Knee Joints		324
	10.4 Construction Joints		326
	10.5 Expansion Joints		327
11.	FOUNDATIONS		331
	11.1 Objectives		331
	11.2 Loading and Proportioning		332

				Contents	xvii
	11.3	Spread Foundations			338
		Design Procedures			339
		Plain Concrete Footings			343
	11.4	Wall Footings			347
	11.5	Isolated Spread Footings			349
	11.6	Combined Spread Footings			356
		Strah Footings			362
		Mat Foundations			364
	117	Deep Foundations		. 1	367
	11.7	Drilled Piers			360
		Pilos			279
		1 0005			512
19	TAT A T	IS			200
14.	191	Objectives			200
	14.1	Concerd Dequinements			380
	12.2	Blain Community Walls			381
	10.0	Plain Concrete Walls			383
	12.3	Wall Beams and Wall Columns			384
		Walls Acting as Beams			384
		Walls Supporting Axial Load			388
	12.4	Basement Retaining Walls			391
	12.5	Cantilever Retaining Walls			396
		Design of Cantilever Retaining Walls			398
13.	LOA	D AND MOMENT DISTRIBUTION	I		402
	13.1	Objectives			402
	13.2	Load Distribution			402
	13.3	Frame Analysis for Gravity Loads			407
		Moment Coefficients			410
		Moment Distribution			411
		Computer Analysis			197
	13.4	Frame Analysis for Lateral Loads			190
		Portal Method			429
		Computer Analysis			430
	13.5	Redistribution of Moments			400
	1010	Redistribution of moments			433
14.	PRE	LIMINARY DESIGN			430
	14.1	Objectives			439
	14.2	Procedures for Preliminary Design			440
		Preliminary Design Steps			440
	14.3	Selecting a Framing Scheme			110
	14.4	Determining Concrete Outlines			111
		General			110
		Individual Member Sizes			140
	14.5	Optimization			149
		General			492
		Cost Optimization			454
		1			194

xviii Contents

APPENDIXES

APPENDIX A	DESIGN TABLES AND FIGURES	463
APPENDIX B	NOTATION	501
APPENDIX C	ABBREVIATIONS	508
APPENDIX D	CONVERSION FACTORS	509
APPENDIX E	BAR PROPERTIES	510
INDEX		513