Bayesian Biostatistics

EMMANUEL LESAFFRE Erasmus MC, Rotterdam, The Netherlands and K.U. Leuven, Belgium

ANDREW B. LAWSON Medical University of South Carolina, Charleston, USA

An authoritative guide to the complex world of Bayesian biomedical statistics

The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets.

Through examples, exercises and a combination of introductory and more advanced chapters, this book provides an invaluable understanding of the complex world of biomedical statistics illustrated via a diverse range of applications taken from epidemiology, exploratory clinical studies, health promotion studies, image analysis and clinical trials.

Key Features:

- Provides an authoritative account of Bayesian methodology, from its most basic elements to its practical implementation, with an emphasis on healthcare techniques.
- Contains introductory explanations of Bayesian principles common to all areas of application.
- Presents clear and concise examples in biostatistics applications such as clinical trials, longitudinal studies, bioassay, survival, image analysis and bioinformatics.
- Illustrated throughout with examples using software including WinBUGS, OpenBUGS, SAS and various dedicated R programs.
- Highlights the differences between the Bayesian and classical approaches.
- Supported by an accompanying website hosting free software and case study guides.

Bayesian Biostatistics introduces the reader smoothly into the Bayesian statistical methods with chapters that gradually increase in level of complexity. Master students in biostatistics, applied statisticians and all researchers with a good background in classical statistics who have an interest in Bayesian methods will find this book useful.

STATISTICS IN PRACTICE

A series of practical books outlining the use of statistical techniques in a wide range of applications areas:

- HUMAN AND BIOLOGICAL SCIENCES
- EARTH AND ENVIRONMENTAL SCIENCES
- INDUSTRY, COMMERCE AND FINANCE

Preface

Notation, terminology and some guidance for reading the book xvii

Part I BASIC CONCEPTS IN BAYESIAN METHODS

1	Mode	es of statistical inference	3
	1.1	The frequentist approach: A critical reflection	4
		1.1.1 The classical statistical approach	4
		1.1.2 The <i>P</i> -value as a measure of evidence	5
		1.1.3 The confidence interval as a measure of evidence	8
		1.1.4 An historical note on the two frequentist paradigms*	8
	1.2	Statistical inference based on the likelihood function	10
		1.2.1 The likelihood function	10
		1.2.2 The likelihood principles	11
	1.3	The Bayesian approach: Some basic ideas	14
		1.3.1 Introduction	14
		1.3.2 Bayes theorem – discrete version for simple events	15
	1.4	Outlook	18
	Exerc	cises	19
2	Baye	s theorem: Computing the posterior distribution	20
	2.1	Introduction	20
	2.2	Bayes theorem – the binary version	20
	2.3	Probability in a Bayesian context	21
	2.4	Bayes theorem – the categorical version	22
	2.5	Bayes theorem – the continuous version	23
	2.6	The binomial case	24
	2.7	The Gaussian case	30
	2.8	The Poisson case	36
	2.9	The prior and posterior distribution of $h(\theta)$	40
	2.10	Bayesian versus likelihood approach	40

xiii

vi CONTENTS

	2.11	Bayesian versus frequentist approach	41
	2.12	The different modes of the Bayesian approach	41
	2.13	An historical note on the Bayesian approach	42
	2.14	Closing remarks	44
	Exerc	cises	44
2	Intro	fuction to Bayasian inference	46
2	3 1	Introduction	46
	3.1	Summarizing the posterior by probabilities	40
	3.2	Postariar summary massures	40
	5.5	2.2.1 Characterizing the location and variability	т/
		of the posterior distribution	47
		2.2.2 Posterior interval estimation	47
	21	Predictive distributions	51
	3.4	2.4.1 The frequentiest approach to prediction	52
		3.4.1 The frequentist approach to prediction	52
		3.4.2 The Bayesian approach to prediction	54
	25	5.4.5 Applications	J4
	3.5	Exchangeability	38
	3.6	A normal approximation to the posterior	00
		3.6.1 A Bayesian analysis based on a normal approximation	(0
		to the likelihood	60
		3.6.2 Asymptotic properties of the posterior distribution	62
	3.7	Numerical techniques to determine the posterior	63
		3.7.1 Numerical integration	63
		3.7.2 Sampling from the posterior	65
		3.7.3 Choice of posterior summary measures	72
	3.8	Bayesian hypothesis testing	72
		3.8.1 Inference based on credible intervals	72
		3.8.2 The Bayes factor	74
		3.8.3 Bayesian versus frequentist hypothesis testing	76
	3.9	Closing remarks	78
	Exerc	cises	79
4	More	than one parameter	82
	4.1	Introduction	82
	4.2	Joint versus marginal posterior inference	83
	4.3	The normal distribution with μ and σ^2 unknown	83
	1.5	4.3.1 No prior knowledge on μ and σ^2 is available	84
		4.3.2 An historical study is available	86
		4 3 3 Expert knowledge is available	88
	44	Multivariate distributions	89
	4.4	4.4.1 The multivariate normal and related distributions	89
		4.4.2 The multinomial distribution	90
	45	Frequentist properties of Bayesian inference	92
	46	Sampling from the posterior distribution. The Method of Composition	93
	47	Bayesian linear regression models	96
	/	4.7.1 The frequentist approach to linear regression	96
		472 A noninformative Bayesian linear regression model	97
		T I G TA HANNING HANNAL DAVIANAL HIGH CALLS I CANOL HUGH CI	71

CONTENTS vii

		4.7.3	Posterior summary measures for the linear regression model	98
		4.7.4	Sampling from the posterior distribution	99
		4.7.5	An informative Bayesian linear regression model	101
	4.8	Bayes	ian generalized linear models	101
	4.9	More	complex regression models	102
	4.10	Closin	ng remarks	102
	Exerc	ises	And the second state in the sign and states a	102
5	Choo	sing the	e prior distribution	104
	5.1	Introd	uction	104
	5.2	The se	equential use of Bayes theorem	104
	5.3	Conju	gate prior distributions	106
		5.3.1	Univariate data distributions	106
		5.3.2	Normal distribution – mean and variance unknown	109
		5.3.3	Multivariate data distributions	110
		5.3.4	Conditional conjugate and semiconjugate distributions	111
		5.3.5	Hyperpriors	112
	5.4	Nonin	formative prior distributions	113
		5.4.1	Introduction	113
		5.4.2	Expressing ignorance	114
		5.4.3	General principles to choose noninformative priors	115
		5.4.4	Improper prior distributions	119
		5.4.5	Weak/vague priors	120
	5.5	Inform	native prior distributions	121
		5.5.1	Introduction	121
		5.5.2	Data-based prior distributions	121
		5.5.3	Elicitation of prior knowledge	122
		5.5.4	Archetypal prior distributions	126
	5.6	Prior of	distributions for regression models	129
		5.6.1	Normal linear regression	129
		5.6.2	Generalized linear models	131
		5.6.3	Specification of priors in Bayesian software	134
	5.7	Mode	ling priors	134
	5.8	Other	regression models	136
	5.9	Closir	ng remarks	136
	Exerc	ises		137
6	Mark	ov chai	n Monte Carlo sampling	139
U	61	Introd	luction	139
	62	The G	hibbs sampler	140
	0.2	6.2.1	The bivariate Gibbs sampler	140
		622	The general Gibbs sampler	146
		6.2.3	Remarks*	150
		6.2.4	Review of Gibbs sampling approaches	152
		6.2.5	The Slice sampler*	153
	6.3	The N	(etropolis(–Hastings) algorithm	154
		6.3.1	The Metropolis algorithm	155
		6.3.2	The Metropolis–Hastings algorithm	157

7

		6.3.3 Remarks*	159
		6.3.4 Review of Metropolis(–Hastings) approaches	161
	6.4	Justification of the MCMC approaches*	162
		6.4.1 Properties of the MH algorithm	164
		6.4.2 Properties of the Gibbs sampler	165
	6.5	Choice of the sampler	165
	6.6	The Reversible Jump MCMC algorithm*	168
	6.7	Closing remarks	172
	Exer	cises	173
7	Asse	ssing and improving convergence of the Markov chain	175
	7.1	Introduction	175
	7.2	Assessing convergence of a Markov chain	176
		7.2.1 Definition of convergence for a Markov chain	176
		7.2.2 Checking convergence of the Markov chain	176
		7.2.3 Graphical approaches to assess convergence	177
		7.2.4 Formal diagnostic tests	180
		7.2.5 Computing the Monte Carlo standard error	186
		7.2.6 Practical experience with the formal diagnostic procedures	188
	7.3	Accelerating convergence	189
		7.3.1 Introduction	189
		7.3.2 Acceleration techniques	189
	7.4	Practical guidelines for assessing and accelerating convergence	194
	7.5	Data augmentation	195
	7.6	Closing remarks	200
	Exer	cises	201
8	Softv	vare	202
	8.1	WinBUGS and related software	202
		8.1.1 A first analysis	203
		8.1.2 Information on samplers	206
		8.1.3 Assessing and accelerating convergence	207
		8.1.4 Vector and matrix manipulations	208
		8.1.5 Working in batch mode	210
		8.1.6 Troubleshooting	212
		8.1.7 Directed acyclic graphs	212
		8.1.8 Add-on modules: GeoBUGS and PKBUGS	214
		8.1.9 Related software	214
	8.2	Bayesian analysis using SAS	215
		8.2.1 Analysis using procedure GENMOD	215
		8.2.2 Analysis using procedure MCMC	217
		8.2.3 Other Bayesian programs	220
	8.3	Additional Bayesian software and comparisons	221
		8.3.1 Additional Bayesian software	221
		8.3.2 Comparison of Bayesian software	222
	8.4	Closing remarks	222
	Exer	cises	223

Part II BAYESIAN TOOLS FOR STATISTICAL MODELING

9	Hiera	rchical	models	227
	9.1	Introd	luction	227
	9.2	The P	Poisson-gamma hierarchical model	228
		9.2.1	Introduction	228
		9.2.2	Model specification	229
		9.2.3	Posterior distributions	231
		9.2.4	Estimating the parameters	232
		9.2.5	Posterior predictive distributions	237
	9.3	Full v	ersus empirical Bayesian approach	238
	9.4	Gauss	sian hierarchical models	240
		9.4.1	Introduction	240
		9.4.2	The Gaussian hierarchical model	240
		9.4.3	Estimating the parameters	241
		9.4.4	Posterior predictive distributions	243
		9.4.5	Comparison of FB and EB approach	244
	9.5	Mixed	d models	244
		9.5.1	Introduction	244
		9.5.2	The linear mixed model	244
		9.5.3	The generalized linear mixed model	248
		9.5.4	Nonlinear mixed models	253
		9.5.5	Some further extensions	256
		9.5.6	Estimation of the random effects and posterior	
			predictive distributions	256
		9.5.7	Choice of the level-2 variance prior	258
	9.6	Propri	iety of the posterior	260
	9.7	Asses	sing and accelerating convergence	261
	9.8	Comp	parison of Bayesian and frequentist hierarchical models	263
		9.8.1	Estimating the level-2 variance	263
		9.8.2	ML and REML estimates compared with Bayesian estimates	264
	9.9	Closin	ng remarks	265
	Exerc	cises		265
10	Mode	el buildi	ing and assessment	267
	10.1	Introd	luction	267
	10.2	Measu	ures for model selection	268
		10.2.1	The Bayes factor	268
		10.2.2	2 Information theoretic measures for model selection	274
		10.2.3	3 Model selection based on predictive loss functions	286
	10.3	Mode	l checking	288
		10.3.1	Introduction	288
		10.3.2	2 Model-checking procedures	289
		10.3.3	3 Sensitivity analysis	295
		10.3.4	Posterior predictive checks	300
		10.3.5	5 Model expansion	308
	10.4	Closin	ng remarks	316
	Exerc	rises		316

x CONTENTS

11	Variat	ble selection	319
	11.1	Introduction	319
	11.2	Classical variable selection	320
		11.2.1 Variable selection techniques	320
		11.2.2 Frequentist regularization	322
	11.3	Bayesian variable selection: Concepts and questions	325
	11.4	Introduction to Bayesian variable selection	326
		11.4.1 Variable selection for K small	326
		11.4.2 Variable selection for K large	330
	11.5	Variable selection based on Zellner's g-prior	333
	11.6	Variable selection based on Reversible Jump Markov chain Monte Carlo	336
	11.7	Spike and slab priors	339
		11.7.1 Stochastic Search Variable Selection	340
		11.7.2 Gibbs Variable Selection	343
		11.7.3 Dependent variable selection using SSVS	345
	11.8	Bayesian regularization	345
		11.8.1 Bayesian LASSO regression	346
		11.8.2 Elastic Net and further extensions of the Bayesian LASSO	350
	11.9	The many regressors case	351
	11.10	Bayesian model selection	355
	11.11	Bayesian model averaging	357
	11.12	Closing remarks	359
	Exerci	ises	360

Part III BAYESIAN METHODS IN PRACTICAL APPLICATIONS

12	Bioas	say	365
	12.1	Bioassay essentials	365
		12.1.1 Cell assays	365
		12.1.2 Animal assays	366
	12.2	A generic in vitro example	369
	12.3	Ames/Salmonella mutagenic assay	371
	12.4	Mouse lymphoma assay (L5178Y TK+/-)	373
	12.5	Closing remarks	374
13	Measurement error		
	13.1	Continuous measurement error	375
		13.1.1 Measurement error in a variable	375
		13.1.2 Two types of measurement error on the predictor in linear and	
		nonlinear models	376
		13.1.3 Accommodation of predictor measurement error	378
		13.1.4 Nonadditive errors and other extensions	382
	13.2	Discrete measurement error	382
		13.2.1 Sources of misclassification	382
		13.2.2 Misclassification in the binary predictor	383
		13.2.3 Misclassification in a binary response	386
	13.3	Closing remarks	389

CONTENTS xi

14	Surv	ival analysis	390
	14.1	Basic terminology	390
		14.1.1 Endpoint distributions	391
		14.1.2 Censoring	392
		14.1.3 Random effect specification	393
		14.1.4 A general hazard model	393
		14.1.5 Proportional hazards	394
		14.1.6 The Cox model with random effects	394
	14.2	The Bayesian model formulation	394
		14.2.1 A Weibull survival model	395
		14.2.2 A Bayesian AFT model	397
	14.3	Examples	397
		14.3.1 The gastric cancer study	397
		14.3.2 Prostate cancer in Louisiana: A spatial AFT model	401
	14.4	Closing remarks	406
15	Long	itudinal analysis	407
	15.1	Fixed time periods	407
		15.1.1 Introduction	407
		15.1.2 A classical growth-curve example	408
		15.1.3 Alternate data models	414
	15.2	Random event times	417
	15.3	Dealing with missing data	420
		15.3.1 Introduction	420
		15.3.2 Response missingness	421
		15.3.3 Missingness mechanisms	422
		15.3.4 Bayesian considerations	424
		15.3.5 Predictor missingness	424
	15.4	Joint modeling of longitudinal and survival responses	424
		15.4.1 Introduction	424
		15.4.2 An example	425
	15.5	Closing remarks	429
16	Spatia	al applications: Disease mapping and image analysis	430
	16.1	Introduction	430
	16.2	Disease mapping	430
		16.2.1 Some general spatial epidemiological issues	431
		16.2.2 Some spatial statistical issues	433
		16.2.3 Count data models	433
		16.2.4 A special application area: Disease mapping/risk estimation	434
		16.2.5 A special application area: Disease clustering	438
		16.2.6 A special application area: Ecological analysis	443
	16.3	Image analysis	444
		16.3.1 fMRI modeling	446
		16.3.2 A note on software	455
17	Final	chapter	456
	17.1	What this book covered	456

xii CONTENTS

17.2	Additional Bayesian developments	456	
	17.2.1 Medical decision making	456	
	17.2.2 Clinical trials	457	
	17.2.3 Bayesian networks	457	
	17.2.4 Bioinformatics	458	
	17.2.5 Missing data	458	
	17.2.6 Mixture models	458	
	17.2.7 Nonparametric Bayesian methods	459	
17.3	Alternative reading	459	
Appe	endix: Distributions	460	
A.1	Introduction	460	
A.2	Continuous univariate distributions	461	
A.3	Discrete univariate distributions	477	
A.4	Multivariate distributions	481	
Refe	rences	484	
Inde	Index		