Understanding NMR Spectroscopy

James Keeler, Department of Chemistry, University of Cambridge, UK

This text is aimed at people who have some familiarity with high-resolution NMR and who wish to deepen their understanding of how NMR experiments actually 'work'. This revised and updated edition takes the same approach as the highly-acclaimed first edition. The text concentrates on the description of commonly-used experiments and explains in detail the theory behind how such experiments work. The quantum mechanical tools needed to analyse pulse sequences are introduced step-by-step, but the approach is relatively informal with the emphasis on obtaining a good understanding of how the experiments actually work. The use of two-colour printing and a new larger format improves the readability of the text. In addition, a number of new topics have been introduced:

- How product operators can be extended to describe experiments in AX₂ and AX₃ spin systems, thus making it possible to discuss the important APT, INEPT and DEPT experiments often used in carbon-13 NMR.
- Spin system analysis i.e. how shifts and couplings can be extracted from strongly-coupled (second-order) spectra.
- How the presence of chemically equivalent spins leads to spectral features which are somewhat unusual and possibly misleading, even at high magnetic fields.
- A discussion of chemical exchange effects has been introduced in order to help with the explanation of transverse relaxation.
- The double-quantum spectroscopy of a three-spin system is now considered in more detail.

Reviews of the First Edition

"For anyone wishing to know what really goes on in their NMR experiments, I would highly recommend this book" – Chemistry World

"...I warmly recommend for budding NMR spectroscopists, or others who wish to deepen their understanding of elementary NMR theory or theoretical tools" – Magnetic Resonance in Chemistry

Dr James Keeler is a Senior Lecturer in Chemistry at the University of Cambridge, and a Fellow of Selwyn College. In addition to being actively involved in the development of new NMR techniques, he is also responsible for the undergraduate chemistry course, and is Editor-in-Chief of *Magnetic Resonance in Chemistry*. Dr Keeler is well-known for his clear and accessible exposition of NMR spectroscopy.

Prefac Prefac	ce to the first edition	v vi
1 V	Vhat this book is about and who should read it	1
1.1	How this book is organized	
1.2	Scope and limitations	2
1.3	Context and further reading	3
1.4	On-line resources	3
1.5	Abbreviations and acronyms	4
		4
	setting the scene	5
2.1	NMR frequencies and chemical shifts	5
2.2	Linewidths, lineshapes and integrals	9
2.3	Scalar coupling	10
2.4	The basic NMR experiment	13
2.5	Frequency, oscillations and rotations	15
2.6	Photons	20
2.7 2.8	Moving on	21
2.0	Further reading Exercises	21
		22
3 E	nergy levels and NMR spectra	23
3.1	The problem with the energy level approach	24
3.2	Introducing quantum mechanics	26
3.3	The spectrum from one spin	31
3.4	Writing the Hamiltonian in frequency units	34
3.5	The energy levels for two coupled spins	35
3.6	The spectrum from two coupled spins	38
3.7	Three spins	40
3.8	Summary	44
3.9	Further reading	44
3.10	Exercises	45
4 TI	ne vector model	47
4.1	The bulk magnetization	47
4.2	Larmor precession	50
4.3	Detection	51

4.4	Pulses	52
4.5	On-resonance pulses	57
4.6	Detection in the rotating frame	60
4.7	The basic pulse-acquire experiment	60
4.8	Pulse calibration	61
4.9	The spin echo	63
4.10	Pulses of different phases	66
4.11	Off-resonance effects and soft pulses	67
4.12	Moving on	71
4.13	Further reading	71
4.14	Exercises	72
5 Fc	ourier transformation and data processing	77
5.1	How the Fourier transform works	78
5.2	Representing the FID	82
5.3	Lineshapes and phase	83
5.4	Manipulating the FID and the spectrum	90
5.5	Zero filling	99
5.6	Truncation	100
5.7	Further reading	101
5.8	Exercises	102
6 TI	ne quantum mechanics of one spin	105
6.1	Introduction	105
6.2	Superposition states	106
6.3	Some quantum mechanical tools	107
6.4	Computing the bulk magnetization	112
6.5	Summary	117
6.6	Time evolution	118
6.7	RF pulses	123
6.8	Making faster progress: the density operator	126
6.9	Coherence	134
6.10	Further reading	135
6.11	Exercises	136
7 P	roduct operators	139
7.1	Operators for one spin	139
7.2	Analysis of pulse sequences for a one-spin system	143
7.3	Speeding things up	146
7.4	Operators for two spins	149
7.5	In-phase and anti-phase terms	152
7.6	Hamiltonians for two spins	157
7.7	Notation for heteronuclear spin systems	157
7.8	Spin echoes and J-modulation	158
7.9	Coherence transfer	166

7.10	The INEPT experiment	167
7.11	Selective COSY	171
7.12	Coherence order and multiple-quantum coherences	173
7.13	Summary	178
7.14	Further reading	179
7.15	Exercises	180
8 Ti	wo-dimensional NMR	183
8.1	The general scheme for two-dimensional NMR	184
8.2	Modulation and lineshapes	187
8.3	COSY	190
8.4	DQFCOSY	200
8.5	Double-quantum spectroscopy	203
8.6	Heteronuclear correlation spectra	208
8.7	HSQC	209
8.8	HMQC	212
8.9	Long-range correlation: HMBC	215
8.10	HETCOR	220
8.11	TOCSY	221
8.12	Frequency discrimination and lineshapes	226
8.13	Further reading	236
8.14	Exercises	238
9 R	elaxation and the NOE	241
9.1	The origin of relaxation	242
9.2	Relaxation mechanisms	249
9.3	Describing random motion – the correlation time	251
9.4	Populations	258
9.5	Longitudinal relaxation behaviour of isolated spins	263
9.6	Longitudinal dipolar relaxation of two spins	267
9.7	The NOE	274
9.8	Transverse relaxation	286
9.9	Homogeneous and inhomogeneous broadening	300
9.10	Relaxation due to chemical shift anisotropy	304
9.11	Cross correlation	306
9.12	Summary	311
9.13	Further reading	311
9.14	Exercises	313
10 A	dvanced topics in two-dimensional NMR	319
10.1	Product operators for three spins	320
10.2	COSY for three spins	325
10.3	Reduced multiplets in COSY spectra	330
10.4	Polarization operators	337
10.5	ZCOSY	345

10.6	HMBC	347
10.7	Sensitivity-enhanced experiments	349
10.8	Constant time experiments	353
10.9	TROSY	358
10.10	Double-quantum spectroscopy of a three-spin system	366
10.11	Further reading	374
10.12	Exercises	376
11 Cc	pherence selection: phase cycling and field gradient	
	lses	381
-	Coherence order	382
	Coherence transfer pathways	387
	Frequency discrimination and lineshapes	389
	The receiver phase	391
	Introducing phase cycling	395
	Some phase cycling 'tricks'	401
	Axial peak suppression	401
	CYCLOPS	403
	Examples of practical phase cycles	403
	Concluding remarks about phase cycling	404
	Introducing field gradient pulses	408
	Features of selection using gradients	409
	Examples of using gradient pulses	410
	Advantages and disadvantages of coherence selection with	421
	gradients	426
	Suppression of zero-quantum coherence	426
	Selective excitation with the aid of gradients	432
	Further reading	435
	Exercises	436
12 Ea	uivalant aning and anin sustant and by t	
	uivalent spins and spin system analysis	441
	Strong coupling in a two-spin system	442
	Chemical and magnetic equivalence	446
	Product operators for AX_n (I _n S) spin systems	450
	Spin echoes in I _n S spin systems	455
	INEPT in I _n S spin systems	458
	DEPT Onin sustain and i	462
	Spin system analysis	468
	Further reading	477
12.9 1	Exercises	478
13 Ho	w the spectrometer works	483
13.1	The magnet	483
13.2	The probe	485
13.3	The transmitter	486

13	.4	4 The receiver	488
13	.5	5 Digitizing the signal	489
13	.6	6 Quadrature detection	491
13	.7	7 The pulse programmer	493
13	.8	B Further reading	493
13	.9	9 Exercises	494
4	0	Some mathematical topics	495
A.1	1	The exponential function and logarithms	495
A.2	2	Complex numbers	497
A.3	3	Trigonometric identities	499
A.4	1	Further reading	500
	1	ndex	501