Contents in Brief

	Preface	viii
1	The Foundations of Biochemistry	1
I	STRUCTURE AND CATALYSIS	45
2	Water	47
3	Amino Acids, Peptides, and Proteins	75
4	The Three-Dimensional Structure of Proteins	115
5	Protein Function	157
6	Enzymes	187
7	Carbohydrates and Glycobiology	241
8	Nucleotides and Nucleic Acids	279
9	DNA-Based Information Technologies	319
10	Lipids	361
11	Biological Membranes and Transport	387
12	Biosignaling	437
II	BIOENERGETICS AND METABOLISM	491
13	Bioenergetics and Biochemical Reaction Types	495
14	Glycolysis, Gluconeogenesis, and the	
	Pentose Phosphate Pathway	533
15	Principles of Metabolic Regulation	575
16	The Citric Acid Cycle	619
17	Fatty Acid Catabolism	649
18	Amino Acid Oxidation and the Production of Urea	675
19	Oxidative Phosphorylation	711
20	Photosynthesis and Carbohydrate Synthesis in Plants	755
21	Lipid Biosynthesis	811
22	Biosynthesis of Amino Acids, Nucleotides,	
	and Related Molecules	859
23	Hormonal Regulation and Integration of	007
	Mammalian Metabolism	907
III	INFORMATION PATHWAYS	955
24	Genes and Chromosomes	957
25	DNA Metabolism	987
26	RNA Metabolism	1035
27	Protein Metabolism	1077
28	Regulation of Gene Expression	1127
	Abbreviated Solutions to Problems	AS-1
	Glossary	G-1
	Index	I-1

Contents

1	The Foundations of Dischamistry	1
1	The Foundations of Biochemistry	1
1.1	Cellular Foundations	3
	Cells Are the Structural and Functional Units	0
	of All Living Organisms Cellular Dimensions Are Limited by Diffusion	3
	Organisms Belong to Three Distinct Domains of Life	4
	Organisms Differ Widely in Their Sources of Energy	nilvi
	and Biosynthetic Precursors	5
	Bacterial and Archaeal Cells Share Common	ang.
	Features but Differ in Important Ways	6
	Eukaryotic Cells Have a Variety of Membranous Organelles, Which Can Be Isolated for Study	7
	The Cytoplasm Is Organized by the Cytoskeleton	265
	and Is Highly Dynamic	7
	Cells Build Supramolecular Structures	9
	In Vitro Studies May Overlook Important Interactions	91/A
	among Molecules	11
1.2	Chemical Foundations	12
	Biomolecules Are Compounds of Carbon with a	
	Variety of Functional Groups	12
	BOX 1-1 Molecular Weight, Molecular Mass, and Their	100
	Colle Contain a Universal Cat of Small Malacular	13
	Cells Contain a Universal Set of Small Molecules Macromolecules Are the Major Constituents of Cells	13 15
	Three-Dimensional Structure Is Described by	10
	Configuration and Conformation	16
	BOX 1-2 Louis Pasteur and Optical Activity: In Vino, Veritas	18
	Interactions between Biomolecules Are Stereospecific	19
1.3	Physical Foundations	21
	Living Organisms Exist in a Dynamic Steady State,	
	Never at Equilibrium with Their Surroundings	21
	Organisms Transform Energy and Matter from	01
	Their Surroundings BOX 1-3 Entropy: Things Fall Apart	21
	The Flow of Electrons Provides Energy for Organisms	22
	Creating and Maintaining Order Requires Work and	Mic
	Energy	22
	Energy Coupling Links Reactions in Biology	24
	$K_{\rm eq}$ and ΔG° Are Measures of a Reaction's Tendency to Proceed Spontaneously	25
	Enzymes Promote Sequences of Chemical Reactions	25 27
	Metabolism Is Regulated to Achieve Balance	
	and Economy	29
1 4	Genetic Foundations	29
1.7	Genetic Continuity Is Vested in Single DNA Molecules	30
	The Structure of DNA Allows Its Replication and	30
	Repair with Near-Perfect Fidelity	31
	The Linear Sequence in DNA Encodes Proteins with	
	Three-Dimensional Structures	31
1.5	Evolutionary Foundations	32
	Changes in the Hereditary Instructions	DIY!
	Allow Evolution	32

Contents	xxi
Amino Acids, Peptides, and Proteins	75
Amino Acids	75
Amino Acids Share Common Structural Features The Amino Acid Residues in Proteins Are	76
L Stereoisomers Amino Acids Can Be Classified by R Group BOX 3-1 METHODS Absorption of Light by Molecules:	78 78
The Lambert-Beer Law Uncommon Amino Acids Also Have Important	80
Functions	81
Amino Acids Can Act as Acids and Bases Amino Acids Have Characteristic Titration Curves Titration Curves Predict the Electric Charge of	81 82
Amino Acids Amino Acids Differ in Their Acid-Base Properties	84 84
Peptides and Proteins	85
Peptides Are Chains of Amino Acids Peptides Can Be Distinguished by Their Ionization	85
Behavior Biologically Active Peptides and Polypeptides Occur in a Vast Range of Sizes and Compositions	86
Some Proteins Contain Chemical Groups Other Than Amino Acids	88
Working with Proteins	89
Proteins Can Be Separated and Purified Proteins Can Be Separated and Characterized	89
by Electrophoresis Unseparated Proteins Can Be Quantified	92 95
The Structure of Proteins: Primary Structure The Function of a Protein Depends on Its Amino	96
Acid Sequence The Amino Acid Sequences of Millions of Proteins Have Been Determined	97 97
Protein Chemistry Is Enriched by Methods Derived from Classical Polypeptide Sequencing	98
Mass Spectrometry Offers an Alternative Method to Determine Amino Acid Sequences Small Peptides and Proteins Can Be Chemically	100
Synthesized Amino Acid Sequences Provide Important	102
Biochemical Information Protein Sequences Help Elucidate the History of	104
Life on Earth BOX 3-2 Consensus Sequences and Sequence Logos	104 105
The Three-Dimensional Structure of Proteins	115
Overview of Protein Structure A Protein's Conformation Is Stabilized Largely	116
by Weak Interactions The Peptide Bond Is Rigid and Planar	116 117
Protein Secondary Structure The α Helix Is a Common Protein Secondary	119
Structure ROY 4-1 METHODS Knowing the Right Hand from	120

121

Biomolecules First Arose by Chemical Evolution RNA or Related Precursors May Have Been the First Genes and Catalysts

Biological Evolution Began More Than Three

The First Cell Probably Used Inorganic Fuels
Eukaryotic Cells Evolved from Simpler Precursors

Molecular Anatomy Reveals Evolutionary

in Human Biology and Medicine

2.1 Weak Interactions in Aqueous Systems

Hydrogen Bonding Gives Water Its Unusual

Nonpolar Compounds Force Energetically Unfavorable Changes in the Structure

Water Forms Hydrogen Bonds with Polar Solutes Water Interacts Electrostatically with Charged

Entropy Increases as Crystalline Substances Dissolve

Nonpolar Gases Are Poorly Soluble in Water

van der Waals Interactions Are Weak Interatomic

Weak Interactions Are Crucial to Macromolecular

2.2 Ionization of Water, Weak Acids, and Weak Bases

Weak Acids and Bases Have Characteristic Acid

Titration Curves Reveal the pK_a of Weak Acids

2.3 Buffering against pH Changes in Biological SystemsBuffers Are Mixtures of Weak Acids and Their

The Henderson-Hasselbalch Equation Relates pH,

Untreated Diabetes Produces Life-Threatening

BOX 2-1 MEDICINE On Being One's Own Rabbit

2.5 The Fitness of the Aqueous Environment

Weak Acids or Bases Buffer Cells and Tissues against

 pK_a , and Buffer Concentration

The Ionization of Water Is Expressed by an

The pH Scale Designates the H⁺ and OH

Solutes Affect the Colligative Properties of Aqueous

Functional Genomics Shows the Allocations of Genes to Specific Cellular Processes

Genomic Comparisons Have Increasing Importance

and a Half Billion Years Ago

in Several Stages

Relationships

Water

Properties

Solutes

of Water

Attractions

Solutions

Structure and Function

Pure Water Is Slightly Ionized

Equilibrium Constant

Dissociation Constants

Concentrations

Conjugate Bases

(Don't Try This at Home!)

pH Changes

Acidosis

2.4 Water as a Reactant

for Living Organisms

34

39

39

47

47

51

55

58

59

62

64

64

65

67

the Left

Amino Acid Sequence Affects Stability of the α Helix

3.2

3.3

3.4

	The β Conformation Organizes Polypeptide			BOX 5-1 MEDICINE Carbon Monoxide: A Stealthy Killer	168
	Chains into Sheets β Turns Are Common in Proteins	123 123		Hemoglobin Also Transports H ⁺ and CO ₂ Oxygen Binding to Hemoglobin Is Regulated by	169
	Common Secondary Structures Have Characteristic			2,3-Bisphosphoglycerate	171
	Dihedral Angles Common Secondary Structures Can Be Assessed	123		Sickle Cell Anemia Is a Molecular Disease of Hemoglobin	172
	by Circular Dichroism	125		Colcaryotic Colle (Cyallele finding Colcaryotic College (College College Colle	112
4.2	Thought the distribution of the Stylenous	125	5.2	Complementary Interactions between Proteins	
08	Protein Tertiary and Quaternary Structures Fibrous Proteins Are Adapted for a Structural	123		and Ligands: The Immune System and	174
	Function	125		Immunoglobulins	174
	BOX 4-2 Permanent Waving Is Biochemical Engineering	127		The Immune Response Includes a Specialized Array of Cells and Proteins	174
	BOX 4-3 MEDICINE Why Sailors, Explorers, and College			Antibodies Have Two Identical Antigen-Binding	111
	Students Should Eat Their Fresh Fruits and Vegetables	128		Sites	175
	Structural Diversity Reflects Functional Diversity in Globular Proteins	130		Antibodies Bind Tightly and Specifically to Antigen	177
	Myoglobin Provided Early Clues about the	150		The Antibody-Antigen Interaction Is the Basis for a Variety of Important Analytical Procedures	177
	Complexity of Globular Protein Structure	131	14	The state of the s	1.7
	BOX 4-4 The Protein Data Bank	132	5.5	Protein Interactions Modulated by Chemical	170
	Globular Proteins Have a Variety of Tertiary	100		Energy: Actin, Myosin, and Molecular Motors	179
	Structures ROY 4-5 METHODS Methods for Determining the	133		The Major Proteins of Muscle Are Myosin and Actin Additional Proteins Organize the Thin and Thick	179
	BOX 4-5 METHODS Methods for Determining the Three-Dimensional Structure of a Protein	134		Filaments into Ordered Structures	179
	Some Proteins or Protein Segments Are	134		Myosin Thick Filaments Slide along Actin	
	Intrinsically Disordered	138		Thin Filaments	182
	Protein Motifs Are the Basis for Protein	378.0	6	Enzymes www.solutios.viscos ara seeso infoquov	187
	Structural Classification	139		Vonpoiar Compounds Force Energetically	
	Protein Quaternary Structures Range from Simple Dimers to Large Complexes	141	6.1	An Introduction to Enzymes	187
00	Programme and the programme of the progr			Most Enzymes Are Proteins Enzymes Are Classified by the Peastions	188
4.4	Protein Denaturation and Folding	142		Enzymes Are Classified by the Reactions They Catalyze	188
	Loss of Protein Structure Results in Loss of Function	143	62		190
	Amino Acid Sequence Determines Tertiary Structure	144	0.2	How Enzymes Work Enzymes Affect Reaction Rates, Not Equilibria	190
	Polypeptides Fold Rapidly by a Stepwise Process	144		Reaction Rates and Equilibria Have Precise	130
	Some Proteins Undergo Assisted Folding	146		Thermodynamic Definitions	192
	Defects in Protein Folding Provide the Molecular Basis for a Wide Range of Human Genetic			A Few Principles Explain the Catalytic Power and	2 IX 1
	Disorders	147		Specificity of Enzymes	192
	BOX 4-6 MEDICINE Death by Misfolding: The Prion			Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State	193
	Diseases	150		Binding Energy Contributes to Reaction	7 21
-	Small Populdes and Proteins Can be Chemically	4		Specificity and Catalysis	195
5	Protein Function	157		Specific Catalytic Groups Contribute to Catalysis	197
5.1	Reversible Binding of a Protein to a Ligand:		6.3	Enzyme Kinetics as an Approach to Understanding	
	Oxygen-Binding Proteins	158		Mechanism	198
	Oxygen Can Bind to a Heme Prosthetic Group	158		Substrate Concentration Affects the Rate of	100
	Globins Are a Family of Oxygen-Binding Proteins	159		Enzyme-Catalyzed Reactions The Relationship between Substrate Concentration	198
	Myoglobin Has a Single Binding Site for Oxygen Protein-Ligand Interactions Can Be Described	159		and Reaction Rate Can Be Expressed	
	Quantitatively	160		Quantitatively	200
	Protein Structure Affects How Ligands Bind	162		Kinetic Parameters Are Used to Compare	1
	Hemoglobin Transports Oxygen in Blood	163		Enzyme Activities	201
	Hemoglobin Subunits Are Structurally Similar	169		BOX 6-1 Transformations of the Michaelis-Menten Equation: The Double-Reciprocal Plot	202
	to Myoglobin Hemoglobin Undergoes a Structural Change	163		Many Enzymes Catalyze Reactions with Two or	202
	on Binding Oxygen	164		More Substrates	204
	Hemoglobin Binds Oxygen Cooperatively	165		Enzyme Activity Depends on pH	205
	Cooperative Ligand Binding Can Be	100		Pre-Steady State Kinetics Can Provide Evidence	200
	Described Quantitatively Two Models Suggest Mechanisms for	166		for Specific Reaction Steps Enzymes Are Subject to Reversible or Irreversible	206
	Cooperative Binding	167		Inhibition	206

				Contents	xxiii
	BOX 6-2 Kinetic Tests for Determining Inhibition Mechanisms	209		Glycosaminoglycans Are Heteropolysaccharides of the Extracellular Matrix	258
	BOX 6-3 MEDICINE Curing African Sleeping Sickness	× 90.2	7.3	Glycoconjugates: Proteoglycans, Glycoproteins,	
	with a Biochemical Trojan Horse	211		and Glycosphingolipids	261
6.4	Examples of Enzymatic Reactions The Chymotrypsin Mechanism Involves Acylation	213		Proteoglycans Are Glycosaminoglycan-Containing Macromolecules of the Cell Surface and	
	and Deacylation of a Ser Residue An Understanding of Protease Mechanisms Leads	213		Extracellular Matrix BOX 7-3 MEDICINE Defects in the Synthesis or	261
	to New Treatments for HIV Infections Hexokinase Undergoes Induced Fit on Substrate	215		Degradation of Sulfated Glycosaminoglycans Can Lead to Serious Human Disease	264
	Binding The Enolase Reaction Mechanism Requires	218		Glycoproteins Have Covalently Attached Oligosaccharides	265
	Metal Ions Lysozyme Uses Two Successive Nucleophilic	220		Glycolipids and Lipopolysaccharides Are Membrane Components	266
	Displacement Reactions	220	7.4	Carbohydrates as Informational Molecules:	
	An Understanding of Enzyme Mechanism Produces Useful Antibiotics	223		The Sugar Code	267
6.5	Regulatory Enzymes	225		Lectins Are Proteins That Read the Sugar Code and Mediate Many Biological Processes	268
	Allosteric Enzymes Undergo Conformational Changes in Response to Modulator Binding	226		Lectin-Carbohydrate Interactions Are Highly Specific and Often Multivalent	271
	The Kinetic Properties of Allosteric Enzymes Diverge from Michaelis-Menten Behavior	227	7.5	Working with Carbohydrates	272
	Some Enzymes Are Regulated by Reversible Covalent Modification	228	8	Nucleotides and Nucleic Acids	279
	Phosphoryl Groups Affect the Structure and Catalytic Activity of Enzymes	229		Some Basics	279
	Multiple Phosphorylations Allow Exquisite Regulatory Control	230	888	Nucleotides and Nucleic Acids Have Characteristic Bases and Pentoses	279
	Some Enzymes and Other Proteins Are Regulated by Proteolytic Cleavage of an			Phosphodiester Bonds Link Successive Nucleotides in Nucleic Acids	282
	Enzyme Precursor A Cascade of Proteolytically Activated Zymogens	230		The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids	284
	Leads to Blood Coagulation Some Regulatory Enzymes Use Several Regulatory	232	8.2	Nucleic Acid Structure	285
	Mechanisms Mechanisms	235		DNA Is a Double Helix That Stores Genetic Information	285
7	Carbohydrates and Glycobiology	241		DNA Can Occur in Different Three-Dimensional Forms	288
500		241		Certain DNA Sequences Adopt Unusual Structures	289
7.1	Monosaccharides and Disaccharides The Two Families of Monosaccharides Are			Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex	290
	Aldoses and Ketoses Monosaccharides Have Asymmetric Centers	242 242		Three-Dimensional Structures	292
	The Common Monosaccharides Have Cyclic Structures	243	8.3	Nucleic Acid Chemistry Double-Helical DNA and RNA Can Be Denatured	295
	Organisms Contain a Variety of Hexose Derivatives BOX 7-1 MEDICINE Blood Glucose Measurements in the	247		Nucleotides and Nucleic Acids Undergo	295 297
	Diagnosis and Treatment of Diabetes	248		Nonenzymatic Transformations Some Bases of DNA Are Methylated	299
	Monosaccharides Are Reducing Agents	249		The Chemical Synthesis of DNA Has Been Automated	301
	Disaccharides Contain a Glycosidic Bond BOX 7-2 Sugar Is Sweet, and So Are a Few	250		Gene Sequences Can Be Amplified with the Polymerase Chain Reaction	301
	Other Things	252		The Sequences of Long DNA Strands Can Be	302
7.2	Polysaccharides Woodland bus notifized mod suff	252		Determined BOX 8-1 A Potent Weapon in Forensic Medicine	304
	Some Homopolysaccharides Are Storage Forms of Fuel	253		DNA Sequencing Technologies Are Advancing Rapidly	306
	Some Homopolysaccharides Serve Structural Roles	254	2 /	Triacylglycerols Endeldersteined Energy sind	310
	Steric Factors and Hydrogen Bonding Influence Homopolysaccharide Folding	256	0.4	Nucleotides Carry Chemical Energy in Cells	310
	Bacterial and Algal Cell Walls Contain Structural Heteropolysaccharides	258		Adenine Nucleotides Are Components of Many Enzyme Cofactors	311

	Some Nucleotides Are Regulatory Molecules Adenine Nucleotides Also Serve as Signals	311 312		Waxes Serve as Energy Stores and Water Repellents	365
9	DNA-Based Information	5/3	10.2	Structural Lipids in Membranes	366
107		319		Glycerophospholipids Are Derivatives of Phosphatidic Acid	367
	rechilologies	319		Some Glycerophospholipids Have Ether-Linked	301
9.1	Studying Genes and Their Products	320		Fatty Acids	369
	Genes Can Be Isolated by DNA Cloning	320		Chloroplasts Contain Galactolipids and	A
	Restriction Endonucleases and DNA Ligases Yield	001		Sulfolipids	369
	Recombinant DNA	321		Archaea Contain Unique Membrane Lipids Sphingolipids Are Derivatives of Sphingosine	369
	Cloning Vectors Allow Amplification of Inserted DNA Segments	324		Sphingolipids at Cell Surfaces Are Sites of	310
	Cloned Genes Can Be Expressed to Amplify	130		Biological Recognition	371
	Protein Production	327		Phospholipids and Sphingolipids Are Degraded	
	Many Different Systems Are Used to Express	130		in Lysosomes	372
	Recombinant Proteins	328		Sterols Have Four Fused Carbon Rings	372
	Alteration of Cloned Genes Produces Altered Proteins	330		BOX 10-1 MEDICINE Abnormal Accumulations of	373
	Terminal Tags Provide Handles for Affinity	550		Membrane Lipids: Some Inherited Human Diseases	3/.
	Purification	332	10.3	Lipids as Signals, Cofactors, and Pigments	374
	The Polymerase Chain Reaction Can Be Adapted			Phosphatidylinositols and Sphingosine	
	for Convenient Cloning	332		Derivatives Act as Intracellular Signals	374
9.2	Using DNA-Based Methods to Understand			Eicosanoids Carry Messages to Nearby Cells	378
7.2	Protein Function	335		Steroid Hormones Carry Messages between Tissues	376
	DNA Libraries Are Specialized Catalogs of	333		Vascular Plants Produce Thousands of Volatile	310
	Genetic Information	335		Signals	376
	Sequence or Structural Relationships Provide	000		Vitamins A and D Are Hormone Precursors	37
	Information on Protein Function	335		Vitamins E and K and the Lipid Quinones	
	Fusion Proteins and Immunofluorescence Can			Are Oxidation-Reduction Cofactors	378
	Reveal the Location of Proteins in Cells	336		Dolichols Activate Sugar Precursors for	200
	Protein-Protein Interactions Can Help Elucidate	220		Biosynthesis Many Natural Pigments Are Lipidic Conjugated	380
	Protein Function DNA Microarrays Reveal RNA Expression	338		Dienes	380
	Patterns and Other Information	341		Polyketides Are Natural Products with Potent	S
	Inactivating or Altering a Gene with CRISPR			Biological Activities	38
	Can Reveal Gene Function	342	10.4	Working with Linids	38
9.3	Genomics and the Human Story	344	10.4	Working with Lipids Lipid Extraction Requires Organic Solvents	382
089	BOX 9-1 MEDICINE Personalized Genomic Medicine	345		Adsorption Chromatography Separates Lipids	302
	Annotation Provides a Description of the Genome	346		of Different Polarity	382
	The Human Genome Contains Many Types of	010		Gas Chromatography Resolves Mixtures	
	Sequences	346		of Volatile Lipid Derivatives	382
	Genome Sequencing Informs Us about Our			Specific Hydrolysis Aids in Determination of	200
	Humanity	348		Lipid Structure Mass Spectrometry Poyeels Complete Lipid	38
	Genome Comparisons Help Locate Genes Involved in Disease	250		Mass Spectrometry Reveals Complete Lipid Structure	388
	Genome Sequences Inform Us about Our Past	350		Lipidomics Seeks to Catalog All Lipids and Their	300
	and Provide Opportunities for the Future	353		Functions	384
	BOX 9-2 Getting to Know Humanity's Next of Kin	353	249	onosaccharides Aprelleducing Agents	M
	contraction of Anglia Popularia		11	Biological Membranes and	
10	Lipids AVG and the assessment of	361		Transport	387
10.1	Storage Lipids	361	11.1	The Composition and Architecture	
	Fatty Acids Are Hydrocarbon Derivatives	361		of Membranes	388
	Triacylglycerols Are Fatty Acid Esters of Glycerol	364		Each Type of Membrane Has Characteristic	
	Triacylglycerols Provide Stored Energy and			Lipids and Proteins	388
	Insulation 2000 100 100 100 100 100 100 100 100 10	364		All Biological Membranes Share Some	00
	Partial Hydrogenation of Cooking Oils Improves Their Stability but Creates Fatty Aside with			Fundamental Properties	389
	Their Stability but Creates Fatty Acids with Harmful Health Effects	365		A Lipid Bilayer Is the Basic Structural Element of Membranes	389
	Training House Lincon	300		OZ MACHINI GALOS	300

Contents	XXV

	Three Types of Membrane Proteins Differ in the		12	Biosignaling	437
	Nature of Their Association with the Membrane Many Integral Membrane Proteins Span the	391		General Features of Signal Transduction	437
	Lipid Bilayer	392	12.1	deficial reactives of Signal Hallsduction	437
	Hydrophobic Regions of Integral Proteins		12.2	G Protein—Coupled Receptors and Second	
	Associate with Membrane Lipids The Topology of an Integral Membrane Protein	393	476	Messengers	440
	Can Often Be Predicted from Its Sequence	394		The β -Adrenergic Receptor System Acts through the Second Messenger cAMP	441
	Covalently Attached Lipids Anchor Some Membrane Proteins	395		BOX 12-1 G Proteins: Binary Switches in Health	
	Amphitropic Proteins Associate Reversibly with			and Disease Several Mechanisms Cause Termination of the	444
	the Membrane	397		β -Adrenergic Response	447
11.2	Membrane Dynamics Acyl Groups in the Bilayer Interior Are Ordered	397		The β -Adrenergic Receptor Is Desensitized by Phosphorylation and by Association with Arrestin	448
	to Varying Degrees	397		Cyclic AMP Acts as a Second Messenger for Many	
	Transbilayer Movement of Lipids Requires			Regulatory Molecules	449
	Catalysis	398		Diacylglycerol, Inositol Trisphosphate, and Ca ²⁺	
	Lipids and Proteins Diffuse Laterally in the Bilayer	399		Have Related Roles as Second Messengers	451
	Sphingolipids and Cholesterol Cluster Together	584		BOX 12-2 METHODS FRET: Biochemistry Visualized in	
	in Membrane Rafts	401		a Living Cell	452
	Membrane Curvature and Fusion Are Central to	100		Calcium Is a Second Messenger That Is Localized	
	Many Biological Processes	402		in Space and Time	452
	Integral Proteins of the Plasma Membrane Are Involved in Surface Adhesion, Signaling, and		12.3	GPCRs in Vision, Olfaction, and	
	Other Cellular Processes	405		Gustation	456
11 2				The Vertebrate Eye Uses Classic GPCR	150
11.3	Solute Transport across Membranes	405		Mechanisms	456
	Transport May Be Passive or Active	406		BOX 12-3 MEDICINE Color Blindness: John Dalton's	100
	Transporters and Ion Channels Share Some			Experiment from the Grave	458
	Structural Properties but Have Different	100		Vertebrate Olfaction and Gustation Use	430
	Mechanisms	406		Mechanisms Similar to the Visual System	459
	The Glucose Transporter of Erythrocytes	100		All GPCR Systems Share Universal Features	459
	Mediates Passive Transport The Chloride-Bicarbonate Exchanger Catalyzes	408			
	Electroneutral Cotransport of Anions across		12.4	Receptor Tyrosine Kinases	461
	the Plasma Membrane	410		Stimulation of the Insulin Receptor Initiates a	
	BOX 11-1 MEDICINE Defective Glucose and Water	110		Cascade of Protein Phosphorylation Reactions	461
	Transport in Two Forms of Diabetes	411		The Membrane Phospholipid PIP ₃ Functions at	603
	Active Transport Results in Solute Movement	711		a Branch in Insulin Signaling	463
	against a Concentration or Electrochemical			Cross Talk among Signaling Systems Is Common	601
	Gradient	412		and Complex	465
	P-Type ATPases Undergo Phosphorylation during		12.5	Receptor Guanylyl Cyclases, cGMP, and	
	Their Catalytic Cycles	413	17.5	Protein Kinase G	466
	V-Type and F-Type ATPases Are ATP-Driven			lesituals	100
	Proton Pumps	416	12.6	Multivalent Adaptor Proteins and Membrane	
	ABC Transporters Use ATP to Drive the Active			Rafts The bits a state of quoto lytoriquois	467
	Transport of a Wide Variety of Substrates	417		Protein Modules Bind Phosphorylated Tyr, Ser,	107
	Ion Gradients Provide the Energy for Secondary			or Thr Residues in Partner Proteins	468
	Active Transport	418		Membrane Rafts and Caveolae Segregate	100
	BOX 11-2 MEDICINE A Defective Ion Channel in Cystic			Signaling Proteins	470
	Fibrosis	419	609	of Hydrolysis	
	Aquaporins Form Hydrophilic Transmembrane		12.7	Gated Ion Channels	471
	Channels for the Passage of Water	423		Ion Channels Underlie Electrical Signaling	
	Ion-Selective Channels Allow Rapid Movement			in Excitable Cells	471
	of Ions across Membranes	425		Voltage-Gated Ion Channels Produce Neuronal	
	Ion-Channel Function Is Measured Electrically	425		Action Potentials	472
	The Structure of a K ⁺ Channel Reveals the Basis	100		Neurons Have Receptor Channels That Respond	450
	for Its Specificity Gated Ion Channels Are Central in Neuronal	426		to Different Neurotransmitters	473
	Function	427		Toxins Target Ion Channels	473
	Defective Ion Channels Can Have Severe	421	12.8	Regulation of Transcription by Nuclear	
	Physiological Consequences	130		Hormone Recentors	473

12.9	Signaling in Microorganisms and Plants Bacterial Signaling Entails Phosphorylation in	475		Inorganic Polyphosphate Is a Potential Phosphoryl Group Donor	516
	a Two-Component System Signaling Systems of Plants Have Some of the	475	13.4	Biological Oxidation-Reduction Reactions The Flow of Electrons Can Do Biological Work	517 518
	Same Components Used by Microbes and Mammals	476		Oxidation-Reductions Can Be Described as Half-Reactions	518
12.10		476		Biological Oxidations Often Involve	519
	The Cell Cycle Has Four Stages Levels of Cyclin-Dependent Protein Kinases	476		Dehydrogenation Reduction Potentials Measure Affinity for Electrons	520
	Oscillate CDKs Regulate Cell Division by Phosphorylating	477		Standard Reduction Potentials Can Be Used to Calculate Free-Energy Change	521
12.11	Oncogenes, Tumor Suppressor Genes, and	479		Cellular Oxidation of Glucose to Carbon Dioxide Requires Specialized Electron Carriers	522
449	Programmed Cell Death	481		A Few Types of Coenzymes and Proteins Serve as Universal Electron Carriers	522
	Oncogenes Are Mutant Forms of the Genes for Proteins That Regulate the Cell Cycle	481		NADH and NADPH Act with Dehydrogenases as Soluble Electron Carriers	522
	BOX 12-4 MEDICINE Development of Protein Kinase Inhibitors for Cancer Treatment	482		NAD Has Important Functions in Addition to Electron Transfer	524
	Defects in Certain Genes Remove Normal Restraints on Cell Division Apoptosis Is Programmed Cell Suicide	484 485		Dietary Deficiency of Niacin, the Vitamin Form of NAD and NADP, Causes Pellagra	528
20	GPCHs in Vision, Olfaction, and bases AMC gnizu	12.3		Flavin Nucleotides Are Tightly Bound in Flavoproteins	528
II	BIOENERGETICS AND METABOLISM	491	14	Glycolysis, Gluconeogenesis, and	1.3 5
13	Bioenergetics and Biochemical			the Pentose Phosphate Pathway	533
	Reaction Types	495	14.1	Glycolysis	534
13.1	Bioenergetics and Thermodynamics Biological Energy Transformations Obey the	496		An Overview: Glycolysis Has Two Phases The Preparatory Phase of Glycolysis	534
	Laws of Thermodynamics Cells Require Sources of Free Energy	496 497		Requires ATP The Payoff Phase of Glycolysis Yields ATP	538
	Standard Free-Energy Change Is Directly Related to the Equilibrium Constant	497		and NADH The Overall Balance Sheet Shows a Net Gain	540
	Actual Free-Energy Changes Depend on Reactant and Product Concentrations	499		of ATP Glycolysis Is under Tight Regulation	548 548
13.2	Standard Free-Energy Changes Are Additive Chemical Logic and Common Biochemical	500		BOX 14-1 MEDICINE High Rate of Glycolysis in Tumors Suggests Targets for Chemotherapy and	
13.2	Reactions	501		Facilitates Diagnosis Glucose Uptake Is Deficient in Type 1	540
	Biochemical and Chemical Equations Are Not Identical	506	14.3	Diabetes Mellitus	548
13.3	Phosphoryl Group Transfers and ATP	507	14.2	Feeder Pathways for Glycolysis Dietary Polysaccharides and Disaccharides	548
	The Free-Energy Change for ATP Hydrolysis Is Large and Negative	507		Undergo Hydrolysis to Monosaccharides Endogenous Glycogen and Starch Are	548
	Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies			Degraded by Phosphorolysis Other Monosaccharides Enter the Glycolytic	550
	of Hydrolysis ATP Provides Energy by Group Transfers, Not	509	200	Pathway at Several Points	55.
	by Simple Hydrolysis	511	14.3	Fates of Pyruvate under Anaerobic Conditions:	FF
	ATP Donates Phosphoryl, Pyrophosphoryl,	519		Fermentation Pyruvate Is the Terminal Electron Acceptor	553
	and Adenylyl Groups Assembly of Informational Macromolecules	513		in Lactic Acid Fermentation BOX 14-2 Athletes, Alligators, and Coelacanths:	555
	Requires Energy ATP Energizes Active Transport and Muscle	514		Glycolysis at Limiting Concentrations of Oxygen	554
	Contraction Contraction Provide State (AZD	514		Ethanol Is the Reduced Product in Ethanol	
	BOX 13-1 Firefly Flashes: Glowing Reports of ATP Transphosphorylations between Nucleotides	515		Fermentation Thiamine Pyrophosphate Carries "Active"	558
	Occur in All Cell Types	516		Acetaldehyde" Grouns	555

				Contents	xvii
	BOX 14-3 Ethanol Fermentations: Brewing Beer and Producing Biofuels	556		Metabolic Control Analysis Suggests a General Method for Increasing Flux through a	588
	Fermentations Are Used to Produce Some Common Foods and Industrial Chemicals	556	128	Pathway	900
OUR			15.3	Coordinated Regulation of Glycolysis	744
4.4	Gluconeogenesis	558		and Gluconeogenesis	589
	Conversion of Pyruvate to Phosphoenolpyruvate Requires Two Exergonic Reactions Conversion of Fructose 1,6-Bisphosphate to	560		Hexokinase Isozymes of Muscle and Liver Are Affected Differently by Their Product, Glucose 6-Phosphate	590
	Fructose 6-Phosphate Is the Second Bypass Conversion of Glucose 6-Phosphate to Glucose	562		BOX 15-2 Isozymes: Different Proteins That Catalyze the Same Reaction	590
	Is the Third Bypass Gluconeogenesis Is Energetically Expensive,	563		Hexokinase IV (Glucokinase) and Glucose 6-Phosphatase Are Transcriptionally Regulated	592
	but Essential Citric Acid Cycle Intermediates and Some	563		Phosphofructokinase-1 and Fructose 1,6-Bisphosphatase Are Reciprocally	
	Amino Acids Are Glucogenic Mammals Cannot Convert Fatty Acids to Glucose	563 564		Regulated Fructose 2,6-Bisphosphate Is a Potent	592
	Glycolysis and Gluconeogenesis Are Reciprocally Regulated	564		Allosteric Regulator of PFK-1 and FBPase-1 Xylulose 5-Phosphate Is a Key Regulator of Carbohydrate and Fat Metabolism	593593
4.5	Pentose Phosphate Pathway of Glucose Oxidation	565		The Glycolytic Enzyme Pyruvate Kinase Is Allosterically Inhibited by ATP	595
	The Oxidative Phase Produces Pentose Phosphates and NADPH	565		The Gluconeogenic Conversion of Pyruvate to	
	BOX 14-4 MEDICINE Why Pythagoras Wouldn't Eat Falafel: Glucose 6-Phosphate Dehydrogenase			Phosphoenolpyruvate Is under Multiple Types of Regulation Transcriptional Regulation of Glycolysis and	595
	Deficiency The Nonoxidative Phase Recycles Pentose	566		Gluconeogenesis Changes the Number of Enzyme Molecules	596
	Phosphates to Glucose 6-Phosphate Wernicke-Korsakoff Syndrome Is Exacerbated	567		BOX 15-3 MEDICINE Genetic Mutations That Lead to Rare Forms of Diabetes	599
	by a Defect in Transketolase Glucose 6-Phosphate Is Partitioned between	569	15.4	The Metabolism of Glycogen in Animals	601
88	Glycolysis and the Pentose Phosphate Pathway	570	148	Glycogen Breakdown Is Catalyzed by Glycogen Phosphorylase	601
15	Principles of Metabolic Regulation	575 576		Glucose 1-Phosphate Can Enter Glycolysis or, in Liver, Replenish Blood Glucose	601
15.1	Regulation of Metabolic Pathways Cells and Organisms Maintain a Dynamic Steady			The Sugar Nucleotide UDP-Glucose Donates Glucose for Glycogen Synthesis	603
	State Both the Amount and the Catalytic Activity of an Enzyme Can Be Regulated	577 577		BOX 15-4 Carl and Gerty Cori: Pioneers in Glycogen Metabolism and Disease	604
	Reactions Far from Equilibrium in Cells Are Common Points of Regulation	580		Glycogenin Primes the Initial Sugar Residues in Glycogen	607
	Adenine Nucleotides Play Special Roles in Metabolic Regulation	582	15.5	Coordinated Regulation of Glycogen Breakdown	***
15.2	Analysis of Metabolic Control	584		and Synthesis Glycogen Phosphorylase Is Regulated Allosterically	
	The Contribution of Each Enzyme to Flux through a Pathway Is Experimentally Measurable	584		and Hormonally Glycogen Synthase Is Also Regulated by	608
	The Flux Control Coefficient Quantifies the Effect of a Change in Enzyme Activity on			Phosphorylation and Dephosphorylation Glycogen Synthase Kinase 3 Mediates Some	609
	Metabolite Flux through a Pathway The Elasticity Coefficient Is Related to an	585		of the Actions of Insulin Phosphoprotein Phosphatase 1 Is Central	611
	Enzyme's Responsiveness to Changes in Metabolite or Regulator Concentrations	585		to Glycogen Metabolism Allosteric and Hormonal Signals Coordinate	612
	BOX 15-1 METHODS Metabolic Control Analysis: Quantitative Aspects	586		Carbohydrate Metabolism Globally Carbohydrate and Lipid Metabolism Are Integrated	
	The Response Coefficient Expresses the Effect of an Outside Controller on Flux through a		658	by Hormonal and Allosteric Mechanisms	614
	Pathway Metabolia Control Applysis Hea Boon Applied to	587	16	The Citric Acid Cycle	619
	Metabolic Control Analysis Has Been Applied to Carbohydrate Metabolism, with Surprising Results	588	16.1	Production of Acetyl-CoA (Activated Acetate) Pyruvate Is Oxidized to Acetyl-CoA and CO ₂	619 620

	The Pyruvate Dehydrogenase Complex Employs Five Coenzymes	621		BOX 17-2 Coenzyme B ₁₂ : A Radical Solution to a	662
	The Pyruvate Dehydrogenase Complex			Perplexing Problem Transcription Factors Turn on the Synthesis of	
	Consists of Three Distinct Enzymes In Substrate Channeling, Intermediates	621		Proteins for Lipid Catabolism Genetic Defects in Fatty Acyl–CoA	664
	Never Leave the Enzyme Surface	623		Dehydrogenases Cause Serious Disease	664 664
16.2	Reactions of the Citric Acid Cycle The Sequence of Reactions in the Citric Acid	624		Peroxisomes Also Carry Out β Oxidation The β -Oxidation Enzymes of Different Organelles	004
	Cycle Makes Chemical Sense	624		Have Diverged during Evolution The ω Oxidation of Fatty Acids Occurs in the	665
	The Citric Acid Cycle Has Eight Steps	626		Endoplasmic Reticulum	666
	BOX 16-1 Moonlighting Enzymes: Proteins with More Than One Job	628		Phytanic Acid Undergoes α Oxidation in Peroxisomes	667
	BOX 16-2 Synthases and Synthetases; Ligases and		17 2	Ketone Bodies	668
	Lyases; Kinases, Phosphatases, and Phosphorylases: Yes, the Names Are Confusing!	631	888	Ketone Bodies, Formed in the Liver, Are	000
	The Energy of Oxidations in the Cycle Is	051		Exported to Other Organs as Fuel	668
	Efficiently Conserved	633		Ketone Bodies Are Overproduced in Diabetes and during Starvation	670
	BOX 16-3 Citrate: A Symmetric Molecule That Reacts Asymmetrically	634		Reciprocally Regulated and marround and CLAN	
	Why Is the Oxidation of Acetate So Complicated?	635	18	Amino Acid Oxidation and the Production	14.5
	Citric Acid Cycle Components Are Important Biosynthetic Intermediates	636		of Urea	675
	Anaplerotic Reactions Replenish Citric Acid	202	18.1	Metabolic Fates of Amino Groups	676
	Cycle Intermediates Biotin in Pyruvate Carboxylase Carries	636		Dietary Protein Is Enzymatically Degraded to	0.77
	CO_2 Groups	638		Amino Acids Pyridoxal Phosphate Participates in the Transfer	677
16.3		640		of α -Amino Groups to α -Ketoglutarate	679
	Production of Acetyl-CoA by the Pyruvate Dehydrogenase Complex Is Regulated by			Glutamate Releases Its Amino Group as Ammonia in the Liver	680
	Allosteric and Covalent Mechanisms	640		Glutamine Transports Ammonia in the	coc
	The Citric Acid Cycle Is Regulated at Its Three Exergonic Steps	641		Bloodstream Alanine Transports Ammonia from Skeletal	682
	Substrate Channeling through Multienzyme	011		Muscles to the Liver	683
	Complexes May Occur in the Citric Acid Cycle	641	576	Ammonia Is Toxic to Animals	683
	Some Mutations in Enzymes of the Citric Acid		18.2	Nitrogen Excretion and the Urea Cycle Urea Is Produced from Ammonia in Five	684
	Cycle Lead to Cancer	642		Enzymatic Steps	684
17	Fatty Acid Catabolism	649		The Citric Acid and Urea Cycles Can Be Linked The Activity of the Urea Cycle Is Regulated at	686
17.1	Digestion, Mobilization, and Transport of Fats	650		Two Levels	687
	Dietary Fats Are Absorbed in the Small Intestine	650		BOX 18-1 MEDICINE Assays for Tissue Damage	688
	Hormones Trigger Mobilization of Stored Triacylglycerols	651		Pathway Interconnections Reduce the Energetic Cost of Urea Synthesis	688
	Fatty Acids Are Activated and Transported	GE9.		Genetic Defects in the Urea Cycle Can Be Life- Threatening	688
17.2	into Mitochondria	652	584	a Pathway, is Experimentally Measurable ober	
17.2	Oxidation of Fatty Acids The β Oxidation of Saturated Fatty Acids	654	18.3	Pathways of Amino Acid Degradation Some Amino Acids Are Converted to Glucose,	690
	Has Four Basic Steps	655		Others to Ketone Bodies	693
	The Four $oldsymbol{eta}$ -Oxidation Steps Are Repeated to Yield Acetyl-CoA and ATP	656		Several Enzyme Cofactors Play Important Roles in Amino Acid Catabolism	691
	Acetyl-CoA Can Be Further Oxidized in the			Six Amino Acids Are Degraded to Pyruvate	694
	Citric Acid Cycle BOX 17-1 A Long Winter's Nap: Oxidizing Fats during	657		Seven Amino Acids Are Degraded to Acetyl-CoA Phenylalanine Catabolism Is Genetically	69'
	Hibernation Hibernation	658		Defective in Some People	69'
	Oxidation of Unsaturated Fatty Acids Requires Two Additional Reactions	659		Five Amino Acids Are Converted to α -Ketoglutarate	700
	Complete Oxidation of Odd-Number Fatty Acids			Four Amino Acids Are Converted to Succinyl-CoA	70.
	Requires Three Extra Reactions Fatty Acid Oxidation Is Tightly Regulated	660 661		Branched-Chain Amino Acids Are Not Degraded in the Liver	702

				Contents	xxix
	Asparagine and Aspartate Are Degraded to Oxaloacetate	703		ATP-Producing Pathways Are Coordinately Regulated	743
	BOX 18-2 MEDICINE Scientific Sleuths Solve a Murder Mystery	704	19.4	Mitochondria in Thermogenesis, Steroid	2.0.5
138	Mixed-Function-DaidgeM codd To weivrey0	860		Synthesis, and Apoptosis Uncoupled Mitochondria in Brown Adipose	744
19.	Oxidative Phosphorylation	711		Tissue Produce Heat	744
19.1	The Mitochondrial Respiratory Chain	712		Mitochondrial P-450 Monooxygenases Catalyze Steroid Hydroxylations	744
	Electrons Are Funneled to Universal Electron Acceptors Electrons Pass through a Series of	712		Mitochondria Are Central to the Initiation of Apoptosis	745
	Membrane-Bound Carriers Electron Carriers Function in Multienzyme	714	19.5	Mitochondrial Genes: Their Origin and the Effects of Mutations	746
	Complexes Mitochondrial Complexes Associate in	717		Mitochondria Evolved from Endosymbiotic	
	Respirasomes	722		Bacteria Mutations in Mitochondrial DNA Accumulate	746
	Other Pathways Donate Electrons to the Respiratory Chain via Ubiquinone	723		throughout the Life of the Organism	747
	BOX 19-1 METHODS Determining Three-Dimensional Structures of Large Macromolecular Complexes by			Some Mutations in Mitochondrial Genomes Cause Disease	748
	Single-Particle Cryo-Electron Microscopy The Energy of Electron Transfer Is Efficiently	724		A Rare Form of Diabetes Results from Defects in the Mitochondria of Pancreatic β Cells	749
	Conserved in a Proton Gradient	724	20	Dhatasanthasis and Carbahadrata	ors
	Reactive Oxygen Species Are Generated during Oxidative Phosphorylation	726	20	Photosynthesis and Carbohydrate	755
	Plant Mitochondria Have Alternative Mechanisms		20.1	Synthesis in Plants	
	for Oxidizing NADH BOX 19-2 Hot, Stinking Plants and Alternative	727	20.1	Light Absorption Chloroplasts Are the Site of Light-Driven	756
	Respiratory Pathways	728		Electron Flow and Photosynthesis in Plants Chlorophylls Absorb Light Energy for	756
19.2	ATP Synthesis	728		Photosynthesis	759
	In the Chemiosmotic Model, Oxidation and Phosphorylation Are Obligately Coupled	729		Accessory Pigments Extend the Range of Light Absorption	759
	ATP Synthase Has Two Functional Domains, F_0 and F_1	731		Chlorophylls Funnel Absorbed Energy to Reaction Centers by Exciton Transfer	761
	ATP Is Stabilized Relative to ADP on the Surface of F ₁	732	20.2	Photochemical Reaction Centers	763
	The Proton Gradient Drives the Release of ATP	104	20.2	Photosynthetic Bacteria Have Two Types of	8,03
	from the Enzyme Surface Each β Subunit of ATP Synthase Can Assume	732		Reaction Center Kinetic and Thermodynamic Factors Prevent the	763
	Three Different Conformations	733		Dissipation of Energy by Internal Conversion	766
	Rotational Catalysis Is Key to the Binding-Change Mechanism for ATP Synthesis	735		In Plants, Two Reaction Centers Act in Tandem The Cytochrome b_6f Complex Links	766
	How Does Proton Flow through the F _o Complex Produce Rotary Motion?	735		Photosystems II and I Cyclic Electron Flow between PSI and the	770
	BOX 19-3 Atomic Force Microscopy to Visualize			Cytochrome $b_6 f$ Complex Increases the	1.13
	Membrane Proteins Chemiosmotic Coupling Allows Nonintegral	737		Production of ATP Relative to NADPH State Transitions Change the Distribution of LHCII between the Two Photosystems	771 771
	Stoichiometries of O ₂ Consumption and ATP Synthesis	738		Water Is Split by the Oxygen-Evolving Complex	773
	The Proton-Motive Force Energizes Active Transport	738	20.3	ATP Synthesis by Photophosphorylation	774
	Shuttle Systems Indirectly Convey Cytosolic NADH into Mitochondria for Oxidation	739		A Proton Gradient Couples Electron Flow and Phosphorylation	774
19.3	Regulation of Oxidative Phosphorylation	741		The Approximate Stoichiometry of Photophosphorylation Has Been Established	775
851	Oxidative Phosphorylation Is Regulated			The ATP Synthase of Chloroplasts Resembles	
	by Cellular Energy Needs An Inhibitory Protein Prevents ATP Hydrolysis	741		That of Mitochondria	775
	during Hypoxia	741	20.4	Evolution of Oxygenic Photosynthesis	776
	Hypoxia Leads to ROS Production and Several Adaptive Responses	742		Chloroplasts Evolved from Ancient Photosynthetic Bacteria	776

	In <i>Halobacterium</i> , a Single Protein Absorbs Light and Pumps Protons to Drive ATP Synthesis	778		Fatty Acid Biosynthesis Is Tightly Regulated Long-Chain Saturated Fatty Acids Are	818
20.5	The Port are Dehydroneness Complete			Synthesized from Palmitate	820
20.5	Carbon-Assimilation Reactions	780		Desaturation of Fatty Acids Requires a	
	Carbon Dioxide Assimilation Occurs in Three			Mixed-Function Oxidase	821
	Stages	780		BOX 21-1 MEDICINE Oxidases, Oxygenases,	
	Synthesis of Each Triose Phosphate from CO ₂	F06		Cytochrome P-450 Enzymes, and Drug Overdoses	822
	Requires Six NADPH and Nine ATP	786		Eicosanoids Are Formed from 20- and	
	A Transport System Exports Triose Phosphates from the Chloroplast and Imports Phosphate	788		22-Carbon Polyunsaturated Fatty Acids	824
	Four Enzymes of the Calvin Cycle Are Indirectly	100	212	Discumble of Tringulal years Is	026
	Activated by Light	790	21.2	Biosynthesis of Triacylglycerols	826
	reduced by hight	130		Triacylglycerols and Glycerophospholipids Are	000
20.6	Photorespiration and the C ₄ and			Synthesized from the Same Precursors	826
	CAM Pathways	792		Triacylglycerol Biosynthesis in Animals Is Regulated by Hormones	827
	Photorespiration Results from Rubisco's	112		Adipose Tissue Generates Glycerol 3-Phosphate	041
	Oxygenase Activity	792		by Glyceroneogenesis	829
	The Salvage of Phosphoglycolate Is Costly	793		Thiazolidinediones Treat Type 2 Diabetes by	020
	In C ₄ Plants, CO ₂ Fixation and Rubisco Activity	1000		Increasing Glyceroneogenesis	829
	Are Spatially Separated	794		BAUKERSHING SAIN ASHINGHING SOUTHER SAIN ASSERVED	020
	BOX 20-1 Will Genetic Engineering of Photosynthetic		21.3	Biosynthesis of Membrane Phospholipids	830
	Organisms Increase Their Efficiency?	796		Cells Have Two Strategies for Attaching	
	In CAM Plants, CO ₂ Capture and Rubisco Action	8.98		Phospholipid Head Groups	830
	Are Temporally Separated	798		Phospholipid Synthesis in E. coli Employs	
	רווענטאוותווניסוא מחש כמוטשוועוומנפ			CDP-Diacylglycerol	831
20.7	Biosynthesis of Starch, Sucrose, and Cellulose	798		Eukaryotes Synthesize Anionic Phospholipids	
	ADP-Glucose Is the Substrate for Starch			from CDP-Diacylglycerol	833
	Synthesis in Plant Plastids and for Glycogen	1.02		Eukaryotic Pathways to Phosphatidylserine,	
	Synthesis in Bacteria	798		Phosphatidylethanolamine, and	
	UDP-Glucose Is the Substrate for Sucrose			Phosphatidylcholine Are Interrelated	833
	Synthesis in the Cytosol of Leaf Cells	799		Plasmalogen Synthesis Requires Formation of	19.2
	Conversion of Triose Phosphates to Sucrose and	700		an Ether-Linked Fatty Alcohol	834
	Starch Is Tightly Regulated The Chyoverlete Cycle and Chyophograpasis	799		Sphingolipid and Glycerophospholipid Synthesis	005
	The Glyoxylate Cycle and Gluconeogenesis Produce Glucose in Germinating Seeds	800		Share Precursors and Some Mechanisms	835
	Cellulose Is Synthesized by Supramolecular	000		Polar Lipids Are Targeted to Specific Cellular Membranes	835
	Structures in the Plasma Membrane	802		Celiular Mellioraries	099
		002	21.4	Cholesterol, Steroids, and Isoprenoids:	
20.8	Integration of Carbohydrate Metabolism in			Biosynthesis, Regulation, and Transport	837
	Plants 191190 noitosall	804			037
	Pools of Common Intermediates Link Pathways			Cholesterol Is Made from Acetyl-CoA in Four Stages	838
	in Different Organelles	804		Cholesterol Has Several Fates	842
	Diggstore I (BADE IN ZALION) ranto de anogoti (2004-2004)			Cholesterol and Other Lipids Are Carried on	042
24	1::10: A significant La seromeous sent	011		Plasma Lipoproteins	842
21	Lipid Biosynthesis	811		BOX 21-2 MEDICINE ApoE Alleles Predict Incidence of	012
21.1	Biosynthesis of Fatty Acids and Eicosanoids	811		Alzheimer Disease	844
177	Malonyl-CoA Is Formed from Acetyl-CoA and	011		Cholesteryl Esters Enter Cells by Receptor-	011
	Bicarbonate	811		Mediated Endocytosis	846
	Fatty Acid Synthesis Proceeds in a Repeating	011		HDL Carries Out Reverse Cholesterol Transport	847
	Reaction Sequence	812		Cholesterol Synthesis and Transport Are	
	The Mammalian Fatty Acid Synthase Has	11.655		Regulated at Several Levels	847
	Multiple Active Sites	814		Dysregulation of Cholesterol Metabolism Can	
	Fatty Acid Synthase Receives the Acetyl and			Lead to Cardiovascular Disease	849
	Malonyl Groups	814		Reverse Cholesterol Transport by HDL Counters	
	The Fatty Acid Synthase Reactions Are			Plaque Formation and Atherosclerosis	850
	Repeated to Form Palmitate	816		BOX 21-3 MEDICINE The Lipid Hypothesis and the	
	Fatty Acid Synthesis Is a Cytosolic Process in			Development of Statins	851
	Many Organisms but Takes Place in the			Steroid Hormones Are Formed by Side-Chain	
	Chloroplasts in Plants	817		Cleavage and Oxidation of Cholesterol	852
	Acetate Is Shuttled out of Mitochondria as	4.07		Intermediates in Cholesterol Biosynthesis Have	70
	Citrate	817		Many Alternative Fates	853

				Contents	xxxi
22	Biosynthesis of Amino Acids, Nucleotides,			Degradation of Purines and Pyrimidines	
866	and Related Molecules	859		Produces Uric Acid and Urea, Respectively Purine and Pyrimidine Bases Are Recycled	898
22.1	Overview of Nitrogen Metabolism	860		by Salvage Pathways Excess Uric Acid Causes Gout	900
995	The Nitrogen Cycle Maintains a Pool	000		Excess Uric Acid Causes Gout Many Chemotherapeutic Agents Target Enzymes	900
	of Biologically Available Nitrogen Nitrogen Is Fixed by Enzymes of the	860		in Nucleotide Biosynthetic Pathways	901
	Nitrogenase Complex	861	23	Hormonal Regulation and Integration	
	BOX 22-1 Unusual Lifestyles of the Obscure but Abundant Ammonia Is Incorporated into Biomolecules	862	23	of Mammalian Metabolism	907
	through Glutamate and Glutamine	866	23.1	Hormones: Diverse Structures for Diverse	
	Glutamine Synthetase Is a Primary Regulatory Point in Nitrogen Metabolism	867	23.1	Functions	907
	Several Classes of Reactions Play Special Roles in the Biosynthesis of Amino Acids and	001		The Detection and Purification of Hormones Requires a Bioassay	908
	Nucleotides Nucleotides	868		BOX 23-1 MEDICINE How is a Hormone Discovered?	900
22.2	Piccunthesis of Amino Asids	960		The Arduous Path to Purified Insulin	909
22.2	Biosynthesis of Amino Acids α-Ketoglutarate Gives Rise to Glutamate,	869		Hormones Act through Specific High-Affinity	
	Glutamine, Proline, and Arginine	870		Cellular Receptors	910
	Serine, Glycine, and Cysteine Are Derived			Hormones Are Chemically Diverse Hormone Release Is Regulated by a "Top-Down"	911
	from 3-Phosphoglycerate	872		Hierarchy of Neuronal and Hormonal Signals	915
	Three Nonessential and Six Essential Amino Acids Are Synthesized from Oxaloacetate			"Bottom-Up" Hormonal Systems Send Signals	
	and Pyruvate	873		Back to the Brain and to Other Tissues	916
	Chorismate Is a Key Intermediate in the		23.2	Tissue-Specific Metabolism: The Division of	
	Synthesis of Tryptophan, Phenylalanine,	1070		Cones Are Segments of DNA That World In Today	918
	and Tyrosine Histidine Biosynthesis Uses Precursors	876		The Liver Processes and Distributes Nutrients	919
	of Purine Biosynthesis	876		Adipose Tissues Store and Supply Fatty Acids	922
	Amino Acid Biosynthesis Is under Allosteric	077		Brown and Beige Adipose Tissues Are	000
	Regulation Regulation	877		Thermogenic Muscles Use ATP for Mechanical Work	923 925
22.3	Molecules Derived from Amino Acids	880		BOX 23-2 Creatine and Creatine Kinase: Invaluable	040
GEUI	Glycine Is a Precursor of Porphyrins	880		Diagnostic Aids and the Muscle Builder's Friends	926
	Heme Degradation Has Multiple Functions	882		The Brain Uses Energy for Transmission of	
	BOX 22-2 MEDICINE On Kings and Vampires	884		Electrical Impulses	928
	Amino Acids Are Precursors of Creatine and	004		Blood Carries Oxygen, Metabolites, and Hormones	929
	Glutathione D-Amino Acids Are Found Primarily in Bacteria	884 885	23.3	Hormonal Regulation of Fuel Metabolism	930
	Aromatic Amino Acids Are Precursors of Many	0.5		Insulin Counters High Blood Glucose	931
	Plant Substances	886		Pancreatic β Cells Secrete Insulin in Response to	000
	Biological Amines Are Products of Amino	000		Changes in Blood Glucose Glucagon Counters Low Blood Glucose	932 934
	Acid Decarboxylation Arginine Is the Precursor for Biological Synthesis	886		During Fasting and Starvation, Metabolism Shifts	24.3
	of Nitric Oxide	887		to Provide Fuel for the Brain	935
22.4				Epinephrine Signals Impending Activity	937
22.4	Biosynthesis and Degradation of Nucleotides De Novo Purine Nucleotide Synthesis Begins	888		Cortisol Signals Stress, Including Low Blood Glucose	937
	with PRPP	890		Diabetes Mellitus Arises from Defects in Insulin	331
	Purine Nucleotide Biosynthesis Is Regulated	1092		Production or Action	938
	by Feedback Inhibition	892	23.4	Obesity and the Regulation of Body Mass	939
	Pyrimidine Nucleotides Are Made from Aspartate,	902	23.4	Adipose Tissue Has Important Endocrine	737
	PRPP, and Carbamoyl Phosphate Pyrimidine Nucleotide Biosynthesis Is Regulated	893		Functions	939
	by Feedback Inhibition	893		Leptin Stimulates Production of Anorexigenic	
	Nucleoside Monophosphates Are Converted			Peptide Hormones	941
	to Nucleoside Triphosphates	894		Leptin Triggers a Signaling Cascade That Regulates Gene Expression	941
	Ribonucleotides Are the Precursors of Deoxyribonucleotides	894		The Leptin System May Have Evolved to Regulate	941
	Thymidylate Is Derived from dCDP and dUMP	898		the Starvation Response	942

	Insulin Also Acts in the Arcuate Nucleus to Regulate Eating and Energy Conservation	942		DNA Is Degraded by Nucleases DNA Is Synthesized by DNA Polymerases	991 991
	Adiponectin Acts through AMPK to Increase			Replication Is Very Accurate	993
	Insulin Sensitivity	942		E. coli Has at Least Five DNA Polymerases	994
	AMPK Coordinates Catabolism and Anabolism in	0.40		DNA Replication Requires Many Enzymes and	005
	Response to Metabolic Stress The mTORC1 Pathway Coordinates Cell Growth	943		Protein Factors Replication of the <i>E. coli</i> Chromosome Proceeds	995
	with the Supply of Nutrients and Energy	944		in Stages Poplication in Eukowystia Calla la Similar but	997
	Diet Regulates the Expression of Genes Central to Maintaining Body Mass	945		Replication in Eukaryotic Cells Is Similar but More Complex	1003
	Short-Term Eating Behavior Is Influenced by	940		Viral DNA Polymerases Provide Targets for	1000
	Ghrelin, PYY _{3–36} , and Cannabinoids	946		Antiviral Therapy	1005
	Microbial Symbionts in the Gut Influence Energy		25.2	Clutamine Synthetase Is a Frincis Regulation	1005
	Metabolism and Adipogenesis	947	25.2	DNA Repair	1005
23.5	Obesity, Metabolic Syndrome, and			Mutations Are Linked to Cancer All Cells Have Multiple DNA Repair Systems	1005
	Type 2 Diabetes	949		The Interaction of Replication Forks with DNA	1000
	In Type 2 Diabetes the Tissues Become Insensitive	798		Damage Can Lead to Error-Prone Translesion	
	to Insulin	949		DNA Synthesis	1012
	Type 2 Diabetes Is Managed with Diet, Exercise,			BOX 25-1 MEDICINE DNA Repair and Cancer	1015
	Medication, and Surgery	950	25.3	DNA Recombination	1016
m	INFORMATION PATHWAYS	955	23.3	Bacterial Homologous Recombination Is a	1010
Ш	INFORMATION PATHWATS	755		DNA Repair Function	1017
24	Genes and Chromosomes	957		Eukaryotic Homologous Recombination Is	
27				Required for Proper Chromosome Segregation	
24.1	Chromosomal Elements	957		during Meiosis	1019
	Genes Are Segments of DNA That Code for	050		Recombination during Meiosis Is Initiated with Double-Strand Breaks	1021
	Polypeptide Chains and RNAs DNA Molecules Are Much Longer Than the	958		BOX 25-2 MEDICINE Why Proper Segregation of	1021
	Cellular or Viral Packages That Contain Them	958		Chromosomes Matters	1023
	Eukaryotic Genes and Chromosomes Are Very	000		Some Double-Strand Breaks Are Repaired by	834
	Complex	962		Nonhomologous End Joining	1024
24.2	DNA Supercoiling	963		Site-Specific Recombination Results in Precise	
27.2	Most Cellular DNA Is Underwound	964		DNA Rearrangements	1025
	DNA Underwinding Is Defined by Topological	812		Transposable Genetic Elements Move from One Location to Another	1027
	Linking Number	965		Immunoglobulin Genes Assemble by	
	Topoisomerases Catalyze Changes in the Linking	0.05		Recombination	1029
	Number of DNA	967	884	Cholesterol Is Made from Acetyl-Conductistuid	
	BOX 24-1 MEDICINE Curing Disease by Inhibiting Topoisomerases	970	26	RNA Metabolism	1035
	DNA Compaction Requires a Special Form of	370	26.1	DNA Dependent Cynthesis of DNA	1026
	Supercoiling	970	26.1	DNA-Dependent Synthesis of RNA RNA Is Synthesized by RNA Polymerases	1036 1036
24.3	The Structure of Chromosomes	972		RNA Synthesis Begins at Promoters	1038
24.5	Chromatin Consists of DNA and Proteins	972		Transcription Is Regulated at Several Levels	1039
	Histones Are Small, Basic Proteins	973		BOX 26-1 METHODS RNA Polymerase Leaves Its	
	Nucleosomes Are the Fundamental Organizational			Footprint on a Promoter	1040
	Units of Chromatin	973		Specific Sequences Signal Termination of RNA	
	Nucleosomes Are Packed into Highly Condensed	077		Synthesis Eukaryotic Cells Have Three Kinds of Nuclear	1041
	Chromosome Structures BOX 24-2 METHODS Epigenetics, Nucleosome	975		RNA Polymerases	1042
	Structure, and Histone Variants	976		RNA Polymerase II Requires Many Other	1012
	Condensed Chromosome Structures Are	,,,		Protein Factors for Its Activity	1042
	Maintained by SMC Proteins	979		DNA-Dependent RNA Polymerase Undergoes	***
	Bacterial DNA Is Also Highly Organized	979		Selective Inhibition	1046
25	DNA Metabolism	987	26.2	RNA Processing	1047
				Eukaryotic mRNAs Are Capped at the 5' End	1048
25.1	DNA Replication	989		Both Introns and Exons Are Transcribed	1000
	DNA Replication Follows a Set of Fundamental	989		from DNA into RNA RNA Catalyzes the Splicing of Introns	1048
	Rules	209		THAT Catalyzes the Sphelig of Hill Olis	1045

				Contents	xxxiii
	Eukaryotic mRNAs Have a Distinctive 3' End Structure	1053		Stage 5: Newly Synthesized Polypeptide Chains Undergo Folding and Processing	1110
	A Gene Can Give Rise to Multiple Products by Differential RNA Processing	1054		Ribosome Profiling Provides a Snapshot of Cellular Translation	1111
	Ribosomal RNAs and tRNAs Also Undergo Processing	1055		Protein Synthesis Is Inhibited by Many Antibiotics and Toxins	1112
	Special-Function RNAs Undergo Several Types of Processing		27.3	Protein Targeting and Degradation	1114
	RNA Enzymes Are the Catalysts of Some	1059	8811	Posttranslational Modification of Many Eukaryotic Proteins Begins in the	1
	Events in RNA Metabolism Cellular mRNAs Are Degraded at Different Rates	1060 1062		Endoplasmic Reticulum	1114
	Polynucleotide Phosphorylase Makes Random RNA-like Polymers	1063		Glycosylation Plays a Key Role in Protein Targeting	1115
26.3	RNA-Dependent Synthesis of RNA and DNA	1063		Signal Sequences for Nuclear Transport Are Not Cleaved	1118
	Reverse Transcriptase Produces DNA from Viral RNA	1064		Bacteria Also Use Signal Sequences for Protein Targeting	1118
	Some Retroviruses Cause Cancer and AIDS Many Transposons, Retroviruses, and Introns	1066		Cells Import Proteins by Receptor-Mediated Endocytosis	1119
	May Have a Common Evolutionary Origin BOX 26-2 MEDICINE Fighting AIDS with Inhibitors	1066		Protein Degradation Is Mediated by Specialized	
	of HIV Reverse Transcriptase	1067		Systems in All Cells	1121
	Telomerase Is a Specialized Reverse Transcriptase	1067	28	Regulation of Gene Expression	1127
	Some RNAs Are Replicated by RNA-Dependent RNA Polymerase	1070	28.1	Principles of Gene Regulation	1128
	RNA Synthesis Provides Clues to the Origin			RNA Polymerase Binds to DNA at Promoters Transcription Initiation Is Regulated by	1128
	of Life in an RNA World BOX 26-3 METHODS The SELEX Method for Generating	1070		Proteins and RNAs Many Bacterial Genes Are Clustered and	1129
	RNA Polymers with New Functions	1072		Regulated in Operons The <i>lac</i> Operon Is Subject to Negative Regulation	1131 1131
27	Protein Metabolism	1077		Regulatory Proteins Have Discrete DNA-Binding Domains	1133
27.1	The Genetic Code	1078		Regulatory Proteins Also Have Protein-Protein	
	The Genetic Code Was Cracked Using Artificial mRNA Templates	1078	20.2	Interaction Domains Regulation of Gene Expression in Bacteria	1135 1138
	BOX 27-1 Exceptions That Prove the Rule: Natural Variations in the Genetic Code	1082	20.2	The lac Operon Undergoes Positive Regulation	1138
	Wobble Allows Some tRNAs to Recognize More than One Codon	1084		Many Genes for Amino Acid Biosynthetic Enzymes Are Regulated by Transcription	
	The Genetic Code Is Mutation-Resistant	1085		Attenuation Induction of the SOS Response Requires	1139
	Translational Frameshifting and RNA Editing Affect How the Code Is Read	1085		Destruction of Repressor Proteins Synthesis of Ribosomal Proteins Is Coordinated	1142
27.2	Protein Synthesis	1088		with rRNA Synthesis	1143
	Protein Biosynthesis Takes Place in Five Stages The Ribosome Is a Complex Supramolecular	1088		The Function of Some mRNAs Is Regulated by Small RNAs in Cis or in Trans	1144
	Machine Transfer RNAs Have Characteristic Structural	1090		Some Genes Are Regulated by Genetic Recombination	1146
	Features	1092	28.3	Regulation of Gene Expression in Eukaryotes	1147
	Stage 1: Aminoacyl-tRNA Synthetases Attach the Correct Amino Acids to Their tRNAs	1092		Transcriptionally Active Chromatin Is Structurally Distinct from Inactive Chromatin	1148
	Stage 2: A Specific Amino Acid Initiates Protein Synthesis	1096		Most Eukaryotic Promoters Are Positively Regulated	1149
	BOX 27-2 Natural and Unnatural Expansion of the Genetic Code	1098		DNA-Binding Activators and Coactivators	
	Stage 3: Peptide Bonds Are Formed in the			Facilitate Assembly of the Basal Transcription Factors	1150
	Elongation Stage Stage 4: Termination of Polypeptide Synthesis	1103		The Genes of Galactose Metabolism in Yeast Are Subject to Both Positive and Negative	
	Requires a Special Signal BOX 27-3 Induced Variation in the Genetic Code:	1107		Regulation Transcription Activators Have a Modular	1153
	Nonsense Suppression	1107		Structure Structure	1154

XXX

V Contents			
Eukaryotic Gene Expression Can Be Regulated by Intercellular and Intracellular Signals Regulation Can Result from Phosphorylation	1155	Development Is Controlled by Cascades of Regulatory Proteins Stem Cells Have Developmental Potential	60
of Nuclear Transcription Factors	1157	That Can Be Controlled 116 BOX 28-1 Of Fins Wings, Beaks, and Things 11	
Many Eukaryotic mRNAs Are Subject to Translational Repression	1157	BOX 28-1 Of Fins, Wings, Beaks, and Things	UC
Posttranscriptional Gene Silencing Is Mediated	1158	Abbreviated Solutions to Problems AS	5-1
by RNA Interference RNA-Mediated Regulation of Gene Expression	1190	Clossely State of the State of	G-1
Takes Many Forms in Eukaryotes	1159	Cellular and RVAs Are Degraded at Different Races 1062	I-1