CONTENTS

Preface

1 What Is Density Functional Theory?

- 1.1 How to Approach This Book, 1
- 1.2 Examples of DFT in Action, 2
 - 1.2.1 Ammonia Synthesis by Heterogeneous Catalysis, 2

3.1.2 Integrals in & Space, 53 Area and a second

- 1.2.2 Embrittlement of Metals by Trace Impurities, 4
- 1.2.3 Materials Properties for Modeling Planetary Formation, 6
- 1.3 The Schrödinger Equation, 7
- 1.4 Density Functional Theory—From Wave Functions to Electron Density, 10
- 1.5 Exchange–Correlation Functional, 14
- 1.6 The Quantum Chemistry Tourist, 16
 - 1.6.1 Localized and Spatially Extended Functions, 16
 - 1.6.2 Wave-Function-Based Methods, 18
 - 1.6.3 Hartree-Fock Method, 19
 - 1.6.4 Beyond Hartree-Fock, 23
- 1.7 What Can DFT Not Do?, 28
- 1.8 Density Functional Theory in Other Fields, 30
- 1.9 How to Approach This Book (Revisited), 30 References, 31

Further Reading, 32

6 Calculation of Surface Energies, 9

xi

1

v

2 DFT Calculations for Simple Solids

- 2.1 Periodic Structures, Supercells, and Lattice Parameters, 35
- 2.2 Face-Centered Cubic Materials, 39
- 2.3 Hexagonal Close-Packed Materials, 41
- 2.4 Crystal Structure Prediction, 43
- 2.5 Phase Transformations, 44

Exercises, 46

Further Reading, 47

Appendix Calculation Details, 47

3 Nuts and Bolts of DFT Calculations

- 3.1 Reciprocal Space and k Points, 50
 - 3.1.1 Plane Waves and the Brillouin Zone, 50
 - 3.1.2 Integrals in k Space, 53
 - 3.1.3 Choosing k Points in the Brillouin Zone, 55
 - 3.1.4 Metals-Special Cases in k Space, 59
 - 3.1.5 Summary of k Space, 60
- 3.2 Energy Cutoffs, 61
 - 3.2.1 Pseudopotentials, 63
- 3.3 Numerical Optimization, 65
 - 3.3.1 Optimization in One Dimension, 65
 - 3.3.2 Optimization in More than One Dimension, 69
 - 3.3.3 What Do I Really Need to Know about Optimization?, 73
- 3.4 DFT Total Energies—An Iterative Optimization Problem, 73
- 3.5 Geometry Optimization, 75
 - 3.5.1 Internal Degrees of Freedom, 75
 - 3.5.2 Geometry Optimization with Constrained Atoms, 78
 - 3.5.3 Optimizing Supercell Volume and Shape, 78

Exercises, 79

References, 80

Further Reading, 80

Appendix Calculation Details, 81

4 DFT Calculations for Surfaces of Solids

83

- 4.1 Importance of Surfaces, 83
- 4.2 Periodic Boundary Conditions and Slab Models, 84
- 4.3 Choosing k Points for Surface Calculations, 87
- 4.4 Classification of Surfaces by Miller Indices, 88
- 4.5 Surface Relaxation, 94
- 4.6 Calculation of Surface Energies, 96

35

131

- Symmetric and Asymmetric Slab Models, 98 4.7
- Surface Reconstruction, 100 4.8
- Adsorbates on Surfaces, 103 4.9
 - 4.9.1 Accuracy of Adsorption Energies, 106

4.10 Effects of Surface Coverage, 107

Exercises, 110

References, 111

Further Reading, 111

Appendix Calculation Details, 112

DFT Calculations of Vibrational Frequencies 113 5

- Isolated Molecules, 114 5.1
- Vibrations of a Collection of Atoms, 117 5.2
- Molecules on Surfaces, 120 5.3
- Zero-Point Energies, 122 5.4

Phonons and Delocalized Modes, 127 5.5

Exercises, 128

Reference, 128

Further Reading, 128

Appendix Calculation Details, 129

Calculating Rates of Chemical Processes Using 6 **Transition State Theory**

- One-Dimensional Example, 132 6.1
- Multidimensional Transition State Theory, 139 6.2
- Finding Transition States, 142 6.3
 - 6.3.1 Elastic Band Method, 144
 - Nudged Elastic Band Method, 145 6.3.2
 - 6.3.3 Initializing NEB Calculations, 147
- Finding the Right Transition States, 150 6.4
- Connecting Individual Rates to Overall Dynamics, 153 6.5
- Quantum Effects and Other Complications, 156 6.6
 - High Temperatures/Low Barriers, 156 6.6.1
 - 6.6.2 Quantum Tunneling, 157
 - 6.6.3 Zero-Point Energies, 157
- Exercises, 158
- Reference, 159
- Further Reading, 159
- Appendix Calculation Details, 160

Equilibrium Phase Diagrams from Ab Initio 7 Thermodynamics

- Stability of Bulk Metal Oxides, 164 7.1
 - 7.1.1 Examples Including Disorder—Configurational answell eperand to starting of a Entropy, 169
- 7.2 Stability of Metal and Metal Oxide Surfaces, 172
- 7.3 Multiple Chemical Potentials and Coupled Chemical Reactions, 174

Exercises, 175 References, 176 Further Reading, 176 Appendix Calculation Details, 177

Electronic Structure and Magnetic Properties 8

Electronic Density of States, 179 8.1 8.2 Local Density of States and Atomic Charges, 186 Magnetism, 188 8.3 Exercises, 190 Further Reading, 191 Appendix Calculation Details, 192

Colculating Rates of Charalter Providence Ha 9 Ab Initio Molecular Dynamics

- 9.1 Classical Molecular Dynamics, 193
 - Molecular Dynamics with Constant 9.1.1 Energy, 193
 - Molecular Dynamics in the Canonical 9.1.2 Ensemble, 196
 - Practical Aspects of Classical Molecular 9.1.3 Dynamics, 197
- Ab Initio Molecular Dynamics, 198 9.2
- Applications of Ab Initio Molecular Dynamics, 201 9.3
 - 9.3.1 Exploring Structurally Complex Materials: Liquids and Amorphous Phases, 201
 - Exploring Complex Energy Surfaces, 204 9.3.2

Exercises, 207

Reference, 207

Further Reading, 207

Appendix Calculation Details, 208

193

179

10 Accuracy and Methods beyond "Standard" Calculations

209

- 10.1 How Accurate Are DFT Calculations?, 209
- 10.2 Choosing a Functional, 215
- 10.3 Examples of Physical Accuracy, 220
 - 10.3.1 Benchmark Calculations for Molecular Systems—Energy and Geometry, 220
 - 10.3.2 Benchmark Calculations for Molecular
 - Systems—Vibrational Frequencies, 221
 - 10.3.3 Crystal Structures and Cohesive Energies, 222
 - 10.3.4 Adsorption Energies and Bond Strengths, 223
- 10.4 DFT+X Methods for Improved Treatment of Electron Correlation, 224
 - 10.4.1 Dispersion Interactions and DFT-D, 225
 - 10.4.2 Self-Interaction Error, Strongly Correlated Electron Systems, and DFT+U, 227
- 10.5 Larger System Sizes with Linear Scaling Methods and Classical Force Fields, 229
- 10.6 Conclusion, 230

References, 231

Further Reading, 232

Index

235