Contents

For	reword to Second Edition (by David T. Clarkson)	V
Ab	out the Authors	vii
For	reword to First Edition (by David T. Clarkson)	ix
Ac	knowledgments	xi
Ab	breviations	xiii
1.	Assumptions and Approaches	1
	Introduction – History, Assumptions, and Approaches	1
	1 What Is Ecophysiology?	1
	2 The Roots of Ecophysiology	1
	3 Physiological Ecology and the Distribution of Organisms	2
	4 Time Scale of Plant Response to Environment	4
	5 Conceptual and Experimental Approaches	6
	6 New Directions in Ecophysiology	7
	7 The Structure of the Book	7
	References	8
	2.3.2 A Cyanide-Resistant Termoni-0834 is a	105
2.	Photosynthesis, Respiration, and Long-Distance Transport	11
	2.4 eidesturysaksyl Vindeg Applet Product Millian Vinde Turchus III and	
	2A. Photosynthesis	11
	1 Introduction	11
	2 General Characteristics of the Photosynthetic Apparatus	11
	2.1 The "Light" and "Dark" Reactions of Photosynthesis	11
	2.1.1 Absorption of Photons	12
	2.1.2 Fate of the Excited Chlorophyll	13
	2.1.3 Membrane-Bound Photosynthetic Electron	11
	Transport and Bioenergetics	14
	2.1.4 Photosynthetic Carbon Reduction	14
	2.1.5 Oxygenation and Photorespiration	15

	2.2	Supp	ly and Demand of CO ₂ in the Photosynthetic Process	16
		2.2.1	Demand for CO ₂ – the CO ₂ – Response Curve	16
		2.2.2	Supply of CO ₂ —Stomatal and Boundary Layer	
			Conductances	21
		2.2.3	The Mesophyll Conductance	22
3	Resi		of Photosynthesis to Light	26
	3.1		ight Climate Under a Leaf Canopy	26
	3.2		ological, Biochemical, and Anatomical Differences	
	0.2		een Sun and Shade Leaves	27
		3.2.1		27
		3.2.2		29
			Biochemical Differences Between Shade and Sun	
		5.2.5	Leaves	32
		321	The Light-Response Curve of Sun and Shade	02
		3.2.4	Leaves Revisited	33
		225		35
	2.2	3.2.5	The Regulation of Acclimation	36
	3.3		ts of Excess Irradiance	30
		3.3.1		26
		000	Xanthophyll Cycle	36
		3.3.2		11
			Irradiance	41
	3.4		onses to Variable Irradiance	42
			Photosynthetic Induction	43
			Light Activation of Rubisco	43
		3.4.3	Post-illumination CO ₂ Assimilation and Sunfleck-	45
			Utilization Efficiency	45
		3.4.4		45
		3.4.5	Net Effect of Sunflecks on Carbon Gain and	MA
			Growth	47
4			g of the Products of Photosynthesis and Regulation	
		Feedba		47
	4.1		ioning Within the Cell	47
	4.2	Short	-Term Regulation of Photosynthetic Rate by	
		Feedb		48
	4.3	Sugar	r-Induced Repression of Genes Encoding	
			n-Cycle Enzymes	51
	4.4	Ecolo	gical Impacts Mediated by Source-Sink Interactions	51
5	Resp	ponses	to Availability of Water	51
	5.1	Regul	lation of Stomatal Opening	53
	5.2	The A	A—C _c Curve as Affected by Water Stress	54
	5.3	Carbo	on-Isotope Fractionation in Relation to Water-Use	
		Effici		56
	5.4	Other	Sources of Variation in Carbon-Isotope Ratios in C ₃	
		Plants		57
6	Effe	cts of S	Soil Nutrient Supply on Photosynthesis	58
	6.1		Photosynthesis—Nitrogen Relationship	58
	6.2		actions of Nitrogen, Light, and Water	59
	6.3		osynthesis, Nitrogen, and Leaf Life Span	59
7			hesis and Leaf Temperature: Effects and Adaptations	60
	7.1		ts of High Temperatures on Photosynthesis	60
	7.2		ts of Low Temperatures on Photosynthesis	61
8			Air Pollutants on Photosynthesis	63
9		lants	Transport and Bloenergetics	64
	9.1		duction	64
	9.2		emical and Anatomical Aspects	64

Contents xix

		9.3	Intercellular and Intracellular Transport of Metabolites	
			of the C ₄ Pathway	6
		9.4	Photosynthetic Efficiency and Performance at High and	
			Low Temperatures	6
		9.5	C ₃ —C ₄ Intermediates	7
		9.6	Evolution and Distribution of C ₄ Species	7
		9.7	Carbon-Isotope Composition of C ₄ Species	7
	10	CAN	M Plants	7
		10.1	Introduction	7
		10.2	Physiological, Biochemical, and Anatomical Aspects	7
			Water-Use Efficiency	7
			Incomplete and Facultative CAM Plants	7
			Distribution and Habitat of CAM Species	8
			Carbon-Isotope Composition of CAM Species	8
	11		cialized Mechanisms Associated with Photosynthetic	
	11		bon Acquisition in Aquatic Plants	8
4			Introduction	8
				8
			The CO ₂ Supply in Water The Use of Riccohonete by Associa Magnethytes	8
			The Use of Bicarbonate by Aquatic Macrophytes	
			The Use of CO ₂ from the Sediment	8
			Crassulacean Acid Metabolism (CAM) in Aquatic Plants	
			Carbon-Isotope Composition of Aquatic Plants	8
		11.7	1 1 1	
		5.3.3	Sedimentation	8
	12		cts of the Rising CO ₂ Concentration in the Atmosphere	8
		12.1		- 15
			Concentrations	8
		12.2		
			Effects on C ₃ , C ₄ , and CAM Plants	9
	13	Sum	mary: What Can We Gain from Basic Principles and Rates	
		of Si	ngle-Leaf Photosynthesis?	9
	Re	feren	ces	9
	,a.	IRBITS	To a separate Associated with PASANITY Vision	
2B.	Re	-	ation	10
	1		oduction	10
	2	Gen	eral Characteristics of the Respiratory System	10
		2.1	The Respiratory Quotient	10
		2.2	Glycolysis, the Pentose Phosphate Pathway, and the	
			Tricarboxylic (TCA) Cycle	10
		2.3	Mitochondrial Metabolism	10
			2.3.1 The Complexes of the Electron-Transport Chain	10
			2.3.2 A Cyanide-Resistant Terminal Oxidase	10
			2.3.3 Substrates, Inhibitors, and Uncouplers	10
			2.3.4 Respiratory Control	10
		2.4	A Summary of the Major Points of Control of Plant	
		itation	Respiration	10
		2.5	ATP Production in Isolated Mitochondria and In Vivo	10
		2.0		10
			1 ,	10
			Model 2.5.2 ATP Production In Vivo	
		26	2.5.2 Mil Hoddellon in vivo	10
		2.6	Regulation of Electron Transport via the Cytochrome	10
			and the Alternative Paths	10
			2.6.1 Competition or Overflow?	10
			2.6.2 The Intricate Regulation of the Alternative Oxidase	11

		2.6.3	Mitochondrial NAD(P)H Dehydrogenases That	
			Are Not Linked to Proton Extrusion	112
	3 The	e Ecoph	ysiological Function of the Alternative Path	112
	3.1		Production	112
	3.2		We Really Measure the Activity of the Alternative	
	5.2	Path?		113
	2.2			114
	3.3		Alternative Path as an Energy Overflow	
	3.4		H Oxidation in the Presence of a High Energy Charge	117
	3.5		H Oxidation to Oxidize Excess Redox Equivalents	
			the Chloroplast	117
	3.6	Conti	nuation of Respiration When the Activity of the	
		Cytoc	chrome Path Is Restricted	118
	3.7	A Sur	mmary of the Various Ecophysiological Roles of the	
		Alter	native Oxidase	118
	4 En	vironme	ental Effects on Respiratory Processes	119
	4.1		led, Hypoxic, and Anoxic Soils	119
			Inhibition of Aerobic Root Respiration	119
			Fermentation	119
			Cytosolic Acidosis	120
			Avoiding Hypoxia: Aerenchyma Formation	121
	1.2			122
			ty and Water Stress	
	4.3		ent Supply	123
	4.4			123
	4.5		erature	127
	4.6		pH and High Aluminum Concentrations	129
	4.7	Partia	al Pressures of CO ₂	130
	4.8	Effect	s of Plant Pathogens	131
	4.9	Leaf I	Dark Respiration as Affected by Photosynthesis	132
	5 The	Role o	f Respiration in Plant Carbon Balance	132
	5.1		on Balance	132
		5.1.1	Root Respiration	132
		5.1.2	Respiration of Other Plant Parts	133
	5.2		ration Associated with Growth, Maintenance,	
	0.2		on Uptake	134
		5.2.1	Maintenance Respiration	134
			Growth Respiration	136
				140
		5.2.3	Respiration Associated with Ion Transport	
	6 PI	5.2.4	Experimental Evidence	140
			iration: Why Should It Concern Us from an	1.10
		-	Point of View?	143
	Refere	nces		144
2C.	Long-	Distan	ce Transport of Assimilates	151
	1 Inti	roductio	on	151
	2 Ma	jor Tran	sport Compounds in the Phloem: Why Not Glucose?	151
		,	ructure and Function	153
	3.1		plastic and Apoplastic Transport	154
	3.2		r Vein Anatomy	154
	3.3		Transport against a Concentration Gradient	155
			and Ecology of Phloem Loading Mechanisms	157
			nloading	157
				160
			port Problems of Climbing Plants	161
			ansport: Where to Move from Here?	
	Referen	nces		161

Contents xxi

3.	Pl	ınt Water Rel	ations with the special ranging grand had	163
	1	Introduction		163
	-		of Water in Plant Functioning	163
			ation as an Inevitable Consequence of Photosynthesis	164
	2	Water Potentia		165
	3	Water Availab		165
	3		Capacity of Different Soils	169
			ovement Toward the Roots	170
			Profiles as Dependent on Soil Moisture Content	171
			nse Moisture Gradients and Grow Toward Moist	-, -
		Patches	ise Moisture Gradients and Grow Toward Moist	173
	1	Water Relation	on of Calla	174
	4			175
			rajustificiti	175
		4.2 Cell-Wall		177
			and Elastic Adjustment as Alternative Strategies	178
	_		nary Aspects	178
	5		ent Through Plants	
			-Plant—Air Continuum	178
		5.2 Water in		179
		5.3 Water in		183
			an We Measure Negative Xylem Pressures?	185
			ne Flow of Water in the Xylem	186
			vitation or Embolism: The Breakage of the Xylem	400
			ater Column	188
			an Embolized Conduits Resume Their Function?	191
			ade-off Between Conductance and Safety	192
		5.3.6 Tr	ansport Capacity of the Xylem and Leaf Area	194
		5.3.7 Std	orage of Water in Stems	195
		5.4 Water in	Leaves and Water Loss from Leaves	196
		5.4.1 Ef	fects of Soil Drying on Leaf Conductance	196
		5.4.2 Th	ne Control of Stomatal Movements and Stomatal	
		Co	onductance	199
		5.4.3 Ef	fects of Vapor Pressure Difference or Transpiration Rate	
			Stomatal Conductance	201
		5.4.4 Ef	fects of Irradiance and CO ₂ on Stomatal Conductance	203
			ne Cuticular Conductance and the Boundary Layer	
			onductance	203
			omatal Control: A Compromise Between Carbon Gain	
			d Water Loss	204
	6	Water-Use Effi		206
			se Efficiency and Carbon-Isotope Discrimination	206
			ts That Affect Leaf Temperature and Leaf Water Loss	207
			orage in Leaves	209
	7		ility and Growth	210
	8	Adaptations to		211
	U	1	on Avoidance: Annuals and Drought-Deciduous	304
		Species	on Two dance. Thin date and Broaght Beel doub	211
			on Tolerance: Evergreen Shrubs	212
			tion Plants	212
	9		Relations and Freezing Tolerance	214
	10	Salt Tolerance	Actualistic and Freezing Tolerance	216
	11		: The Message That Transpires	216
		rences	. The Message That Hamphes	217

4.	Le	af Ei	nergy	Budgets: Effects of Radiation and Temperature	225
	4A	. Т		lant's Energy Balance	
		1	Intr	roduction	225
		2	Ene	ergy Inputs and Outputs	225
			2.1	Short Overview of a Leaf's Energy Balance	225
			2.2	Short-Wave Solar Radiation	226
			2.3	Long-Wave Terrestrial Radiation	229
			2.4		230
			2.5	Evaporative Energy Exchange	232
				Metabolic Heat Generation	234
		3		deling the Effect of Components of the Energy	
				ance on Leaf Temperature	234
		4		ummary of Hot and Cool Topics	235
			eferer		235
	4B	. Ef	fects	s of Radiation and Temperature	
		1		oduction	237
		2		liation	237
		_	2.1	Effects of Excess Irradiance	237
			2.2		237
			2.2	2.2.1 Damage by UV	238
				2.2.2 Protection Against UV: Repair or Prevention	238
		2	Eff		239
		3		ects of Extreme Temperatures	239
			3.1	How Do Plants Avoid Damage by Free Radicals	220
				at Low Temperature?	239
			3.2	Heat-Shock Proteins	241
			3.3	Are Isoprene and Monoterpene Emissions an Adaptation	
				to High Temperatures?	241
			3.4	Chilling Injury and Chilling Tolerance	242
			3.5	Carbohydrates and Proteins Conferring Frost	
				Tolerance	243
		4	Glo	bal Change and Future Crops	244
		Re	eferer	nces	244
5.	Sca	lling	-Up	Gas Exchange and Energy Balance	
	fro	m tl	ne Le	eaf to the Canopy Level	247
	1	Intro	ducti	on	247
				Vater Use	247
				O ₂ Fluxes	251
			1 2	Vater-Use Efficiency	252
				ffects on Microclimate: A Case Study	253
				or a Higher Level	253
		ereno		a Higher Level	253
	Kei	erenc	es		233
6.	M	2010	1 N/	trition	255
0.	1411	nerd	INU	8.3 «Responsible of the little	255
	1	Intro	ducti	on	255
	2	Acqu	isitio	on of Nutrients	255
		-		ients in the Soil	255
			2.1.1	Nutrient Availability as Dependent on Soil Age	255

Contents xxiii

		212	Nestwiant Complex Bata	257
		2.1.2	Nutrient Supply Rate Nutrient Movement to the Root Surface	259
	2.2		Traits That Determine Nutrient Acquisition	262
	2.2	2.2.1	Increasing the Roots' Absorptive Surface	262
		2.2.2	Transport Proteins: Ion Channels and Carriers	263
		2.2.2	Acclimation and Adaptation of Uptake Kinetics	265
		2.2.4		269
		2.2.5	Acquisition of Phosphorus	270
		2.2.6		275
		2.2.7		279
		2.2.8		21
		2.2.0	Adaptive?	280
	2.3	Sensi	tivity Analysis of Parameters Involved in Phosphate	200
	2.0		isition	282
3	Mut		Acquisition from "Toxic" or "Extreme" Soils	284
3	3.1	Acid		284
	5.1	3.1.1	Aluminum Toxicity	284
		3.1.2	Alleviation of the Toxicity Symptoms by Soil	209
		3.1.2	Amendment	287
		212	Aluminum Resistance	287
	3.2		areous Soils	288
	3.3			289
	3.3		with High Levels of Heavy Metals Why Are the Concentrations of Heavy	205
		3.3.1		289
		222	Metals in Soil High?	205
		3.3.2	Using Plants to Clean or Extract Polluted	290
		222	Water and Soil: Phytoremediation and Phytomining	291
		3.3.3	Why Are Heavy Metals So Toxic to Plants?	291
		3.3.4	Heavy-Metal-Resistant Plants	291
		3.3.5	Biomass Production of Sensitive	296
	2.4	C-1:	and Resistant Plants	296
	3.4		e Soils: An Ever-Increasing Problem in Agriculture	297
		3.4.1 3.4.2	Glycophytes and Halophytes	297
			Energy-Dependent Salt Exclusion from Roots	298
		3.4.3	Energy-Dependent Salt Exclusion from the Xylem	290
		3.4.4	Transport of Na ⁺ from the Leaves to the Roots	298
		215	and Excretion via Salt Glands	290
		3.4.5	Compartmentation of Salt Within the Cell	301
	2.5	Eland	and Accumulation of Compatible Solutes led Soils	301
1	3.5			302
4	4.1		ient-Use Efficiency tion in Nutrient Concentration	302
	4.1	4.1.1	Tissue Nutrient Concentration	302
		4.1.1	Tibbue Tuttient Concentitution	303
	4.2		rissue reduient nequirement	303
	4.2		ent Productivity and Mean Residence Time Nutrient Productivity	304
		4.2.1	Nutrient Productivity The Mean Residence Time of Nutrients	304
		4.2.2	in the Plant	304
	4.3	Martin	ent Loss from Plants	306
	4.5			306
		4.3.1 4.3.2	Zetterining Zeese	307
	4.4		Nutrient Loss by Senescence vstem Nutrient-Use Efficiency	308
5			utrition: A Vast Array of Adaptations and Acclimations	310
	feren		authors. A vasi Array of Adaptations and Accilitations	310
1/6	161611	CCS		310

5.4.4 Integrating Signals Hourthorns Versial The Points

7.	Growth and Allocation					
	1	Intr	oductio	on: What Is Growth?	321	
	2			Whole Plants and Individual Organs	321	
		2.1		th of Whole Plants	322	
				A High Leaf Area Ratio Enables Plants to Grow Fast	322	
			2.1.2	Plants with High Nutrient Concentrations Can Grow		
			2.1.2	Faster	322	
		2.2	Crow	orth of Cells	323	
		2.2		Cell Division and Cell Expansion: The Lockhart Equation	323	
			2.2.2	Cell-Wall Acidification and Removal of Calcium Reduce		
				Cell-Wall Rigidity	324	
			2.2.3	Cell Expansion in Meristems Is Controlled by Cell-Wall		
				Extensibility and Not by Turgor	327	
			2.2.4	The Physical and Biochemical Basis of Yield Threshold		
				and Cell-Wall Yield Coefficient	328	
			2.2.5	The Importance of Meristem Size	328	
	3	The	Physic	ological Basis of Variation in RGR - Plants Grown with Free		
		Acc	ess to N	Nutrients	328	
		3.1	SLA I	s a Major Factor Associated with Variation in RGR	330	
		3.2	Leaf 7	Thickness and Leaf Mass Density	332	
		3.3	Anato	omical and Chemical Differences Associated with Leaf		
			Mass	Density	332	
		3.4	Net A	Assimilation Rate, Photosynthesis, and Respiration	333	
		3.5		and the Rate of Leaf Elongation and Leaf Appearance	333	
		3.6		and Activities per Unit Mass	334	
		3.7		and Suites of Plant Traits	334	
	4	Allo	cation	to Storage	335	
		4.1		Concept of Storage	336	
		4.2		nical Forms of Stores	337	
		4.3		ge and Remobilization in Annuals	337	
		4.4		torage Strategy of Biennials	338	
		4.5		ge in Perennials	338	
		4.6		of Growth and Storage: Optimization	340	
	5	Env	ironme	ental Influences	340	
		5.1	Grow	th as Affected by Irradiance	341	
			5.1.1	Growth in Shade	341	
			5.1.2	Effects of the Photoperiod	345	
		5.2	Grow	th as Affected by Temperature	346	
			5.2.1	Effects of Low Temperature on Root Functioning	346	
			5.2.2	Changes in the Allocation Pattern	346	
		5.3	Grow	th as Affected by Soil Water Potential and Salinity	347	
			5.3.1	Do Roots Sense Dry Soil and Then Send Signals		
				to the Leaves?	348	
			5.3.2	ABA and Leaf Cell-Wall Stiffening	348	
			5.3.3	Effects on Root Elongation	348	
			5.3.4	A Hypothetical Model That Accounts for Effects		
				of Water Stress on Biomass Allocation	349	
		5.4	Grow	th at a Limiting Nutrient Supply	349	
			5.4.1	Cycling of Nitrogen Between Roots and Leaves	349	
			5.4.2	Hormonal Signals That Travel via the Xylem		
				to the Leaves	350	
			5.4.3	Signals That Travel from the Leaves to the Roots	351	
			5.4.4	Integrating Signals from the Leaves and the Roots	351	

Contents xxv

			5.4.5	Effects of Nitrogen Supply on Lear Anatomy and	050
				Chemistry	352
			5.4.6	Nitrogen Allocation to Different Leaves, as Dependent	
				on Incident Irradiance	352
		5.5	Plant	Growth as Affected by Soil Compaction	354
			5.5.1	Effects on Biomass Allocation: Is ABA Involved?	354
			5.5.2	Changes in Root Length and Diameter: A Modification	
				of the Lockhart Equation	354
		5.6	Grow	th as Affected by Soil Flooding	355
		0.0		The Pivotal Role of Ethylene	356
				Effects on Water Uptake and Leaf Growth	357
				Effects on Adventitious Root Formation	358
				Effects on Radial Oxygen Loss	358
		5.7			358
		3.7		th as Affected by Submergence	
			5.7.1	Gas Exchange	359
			5.7.2	Perception of Submergence and Regulation of Shoot	250
		i .	Chen	Elongation	359
		5.8		th as Affected by Touch and Wind	360
		5.9		th as Affected by Elevated Concentrations of CO ₂	351
			in the	Atmosphere	361
	6	Ada	ptation	ns Associated with Inherent Variation in Growth Rate	362
		6.1	Fast- a	and Slow-Growing Species	362
		6.2	Grow	th of Inherently Fast- and Slow-Growing Species Under	
				rce-Limited Conditions	363
			6.2.1	Growth at a Limiting Nutrient Supply	364
			6.2.2	Growth in the Shade	364
		6.3		here Ecological Advantages Associated with a High or	
			Low F		364
			6.3.1	Various Hypotheses	364
			6.3.2	Selection on RGR _{max} Itself, or on Traits That Are	001
			0.5.2	Associated with RGR _{max} ?	365
			6.3.3	An Appraisal of Plant Distribution Requires Information	303
			0.3.3		366
	7	C		on Ecophysiology	367
	7			d Allocation: The Messages About Plant Messages	
	Re	ferer	ices		367
•			Phosp	2.3.2 Suppression of Colonization at High	075
8.	Li	te C	ycles: I	Environmental Influences and Adaptations	375
		- h	Jakan		
	1		oductio		375
	2	Seed		ancy and Germination	375
		2.1		Seed Coats	376
		2.2	Germi	ination Inhibitors in the Seed	377
		2.3	Effects	s of Nitrate	378
		2.4	Other	External Chemical Signals	378
		2.5		s of Light	380
		2.6		s of Temperature	382
		2.7		ological Aspects of Dormancy	384
		2.8		nary of Ecological Aspects of Seed Germination	001
		2.0		ormancy	385
	3	Dorr		ental Phases	385
	9	3.1	-	mi .	385
				ng Phase	
		3.2		ile Phase	386
				Delayed Flowering in Biennials	387
			3.2.2	Juvenile and Adult Traits	388

			3.2.3	3 Vegetative Reproduction	388
			3.2.4	Delayed Greening During Leaf Development	
				in Tropical Trees	390
		3.3	Ren	roductive Phase	391
		0.0	3.3.1		071
			0.0.1	and Short-Day Plants	391
			222		391
			3.3.2		202
				Daylength in Spring and Autumn?	393
			3.3.3		393
			3.3.4	Effects of Temperature on Plant Development	394
			3.3.5	Attracting Pollinators	394
			3.3.6	The Cost of Flowering	395
		3.4	Frui	O	396
		3.5		escence	397
	4		Disp		397
	4				397
				persal Mechanisms	
	_	4.2		History Correlates	398
	5			age to Disperse: Perception, Transduction,	
		and	Respo	onse	398
	Re	eferen	ces		398
9.	Ri	otic 1	Influ	ences	403
	D 1	otic i		CARCES	100
	0.4	C	l- :	intia Appaintiana	102
	9 F			iotic Associations	403
		1		oduction	403
		2	My	corrhizas	403
			2.1	Mycorrhizal Structures: Are They Beneficial for Plant	
				Growth?	404
				2.1.1 The Infection Process	408
				2.1.2 Mycorrhizal Responsiveness	410
			2.2	Nonmycorrhizal Species and Their Interactions	110
			2.2	with Mycorrhizal Species	412
			0.0		
			2.3		413
				2.3.1 Mechanisms That Account for Enhanced	
				Phosphate Absorption by Mycorrhizal Plants	413
				2.3.2 Suppression of Colonization at High Phosphate	
				Availability	415
			2.4	Effects on Nitrogen Nutrition	416
			2.5	Effects on the Acquisition of Water	417
			2.6	Carbon Costs of the Mycorrhizal Symbiosis	418
			2.7		419
		2		Agricultural and Ecological Perspectives	
		3		ociations with Nitrogen-Fixing Organisms	421
			3.1	Symbiotic N ₂ Fixation Is Restricted to a Fairly Limited	
				Number of Plant Species	422
			3.2	Host—Guest Specificity in the Legume—Rhizobium	
				Symbiosis	424
			3.3	The Infection Process in the Legume—Rhizobium	
				Association	424
				3.3.1 The Role of Flavonoids	425
					425
				3.3.3 Entry of the Bacteria	427
				3.3.4 Final Stages of the Establishment of the Symbiosis	428
			3.4	Nitrogenase Activity and Synthesis of Organic Nitrogen	429

Contents

82

	3.5 Carbon and Energy Metabolism of the Nodules	431
	3.6 Quantification of N ₂ Fixation In Situ	432
	3.7 Ecological Aspects of the Nonsymbiotic Association with	
	N ₂ -Fixing Microorganisms	433
	3.8 Carbon Costs of the Legume – Rhizobium Symbiosis	434
	3.9 Suppression of the Legume – Rhizobium Symbiosis at	
	Low pH and in the Presence of a Large Supply of	
	Combined Nitrogen	435
	4 Endosymbionts	436
	5 Plant Life Among Microsymbionts	437
	References	437
9B.	Ecological Biochemistry: Allelopathy and Defence	
,	against Herbivores	445
	1 Introduction	445
	2 Allelopathy (Interference Competition)	445
	3 Chemical Defense Mechanisms	448
	3.1 Defense Against Herbivores	448
	3.2 Qualitative and Quantitative Defense Compounds	451
	3.3 The Arms Race of Plants and Herbivores	451
	3.4 How Do Plants Avoid Being Killed by Their Own Poisons?	455
	3.5 Secondary Metabolites for Medicines and Crop Protection	457
	4 Environmental Effects on the Production of Secondary Plant	437
	Metabolites	460
	4.1 Abiotic Factors	460
	4.2 Induced Defense and Communication Between	400
	Neighboring Plants	462
	4.3 Communication Between Plants and Their Bodyguards	464
	5 The Costs of Chemical Defense	466
	5.1 Diversion of Resources from Primary Growth	466
	5.2 Strategies of Predators	468
	5.3 Mutualistic Associations with Ants and Mites	469
	6 Detoxification of Xenobiotics by Plants: Phytoremediation	469
	7 Secondary Chemicals and Messages That Emerge from	10)
	This Chapter	472
	References	473
	4 The Message to Catch	170
9C.	Effects of Microbial Pathogens	479
JC.	1 Introduction	
	2 Constitutive Antimicrobial Defense Compounds	479 479
		481
		401
	4 Cross-Talk Between Induced Systemic Resistance and Defense Against Herbivores	485
	Potorongo	488
	References	488
9D.	Parasitic Associations	491
	1 Introduction	491
	2 Growth and Development	492
	2.1 Seed Germination	492
	2.2 Haustoria Formation	493
	2.3 Effects of the Parasite on Host Development	496
	3 Water Relations and Mineral Nutrition	498
	4 Carbon Relations	500

xxvii

xxviii

			eferences	501
	9E.	In	nteractions Among Plants	505
	,		Introduction	505
		2	Theories of Competitive Mechanisms	509
		3	How Do Plants Perceive the Presence of Neighbors?	509
		4	Relationship of Plant Traits to Competitive Ability	512
			4.1 Growth Rate and Tissue Turnover	512
			4.2 Allocation Pattern, Growth Form, and Tissue Mass	012
			Density	513
			4.3 Plasticity	514
		5	Traits Associated with Competition for Specific Resources	516
			5.1 Nutrients	516
			5.2 Water	517
			5.3 Light	518
			5.4 Carbon Dioxide	518
		6	Positive Interactions Among Plants	521
			6.1 Physical Benefits	521
			6.2 Nutritional Benefits	521
			6.3 Allelochemical Benefits	521
		7	Plant – Microbial Symbiosis	522
		8	Succession	524
		9	What Do We Gain from This Chapter?	526
		Re	eferences	527
	9F.	Ca	rnivory	533
	,	1	Introduction	533
		2	Structures Associated with the Catching of the Prey and	000
		_	Subsequent Withdrawal of Nutrients from the Prey	533
		3	Some Case Studies	536
			3.1 Dionaea Muscipula	537
			3.2 The Suction Traps of <i>Utricularia</i>	539
			3.3 The Tentacles of <i>Drosera</i>	541
			3.4 Pitchers of Sarracenia	542
			3.5 Passive Traps of Genlisea	542
		4	The Message to Catch	543
		Re	eferences	543
			9C. Effects of Microbial Pathogens	010
10.	Ro	le it	n Ecosystem and Global Processes	545
-0.	110		E The Mark and Stock Trocks See The Mark and E	010
	10A	. I	Decomposition	545
		1	Introduction	545
		2	Litter Quality and Decomposition Rate	546
			2.1 Species Effects on Litter Quality: Links with Ecological Strategy	546
			2.2 Environmental Effects on Decomposition	547
		3	The Link Between Decomposition Rate and Nutrient Supply	548
			3.1 The Process of Nutrient Release	548
			3.2 Effects of Litter Quality on Mineralization	549
			3.3 Root Exudation and Rhizosphere Effects	550
		4	The End Product of Decomposition	552
		Re	ferences	552

Contents

		۰	
v	v		
А	А	1	А

10B.	Ecos	ystem ar	nd Global Processes:		
	Ecophysiological Controls				
1		oduction		555	
2	Ecc	system B	Biomass and Production	555	
	2.1	-	from Plants to Ecosystems	555	
	2.2		logical Basis of Productivity	556	
	2.3 Disturbance and Succession				
	2.4	Photos	ynthesis and Absorbed Radiation	559	
2.5 Net Carbon Balance of Ecosystems					
	2.6	The Glo	obal Carbon Cycle	561	
3	Nu	trient Cyc	cling	563	
	3.1	Vegetat	tion Controls over Nutrient Uptake and Loss	563	
	3.2	Vegetat	tion Controls over Mineralization	565	
4	Ecc	system E	nergy Exchange and the Hydrologic Cycle	565	
	4.1	Vegetat	tion Effects on Energy Exchange	565	
		4.1.1	Albedo	565	
4		4.1.2	Surface Roughness and Energy Partitioning	566	
	4.2	Vegetat	tion Effects on the Hydrologic Cycle	567	
		4.2.1	Evapotranspiration and Runoff	567	
		4.2.2	Feedbacks to Climate	568	
5	Mo	ving to a	Higher Level: Scaling from Physiology to the Globe	568	
F	Refere	nces		569	
Glossary		573			
Index				591	