# Contents

| Preface   | xii      |      |
|-----------|----------|------|
| About the | e Author | xxii |

### CHAPTER 1 The Nature of Econometrics and Economic Data 1

- 1-1 What Is Econometrics? 1
- 1-2 Steps in Empirical Economic Analysis 2
- 1-3 The Structure of Economic Data 5
  - 1-3a Cross-Sectional Data 5
  - 1-3b Time Series Data 7
  - 1-3c Pooled Cross Sections 8
  - 1-3d Panel or Longitudinal Data 9
  - 1-3e A Comment on Data Structures 10
- 1-4 Causality, Ceteris Paribus, and Counterfactual Reasoning 10

Summary 14

Key Terms 15

Problems 15

Computer Exercises 15

#### PART 1

# Regression Analysis with Cross-Sectional Data 19

### **CHAPTER 2 The Simple Regression Model 20**

- 2-1 Definition of the Simple Regression Model 20
- 2-2 Deriving the Ordinary Least Squares Estimates 24 2-2a A Note on Terminology 31
- 2-3 Properties of OLS on Any Sample of Data 32
  2-3a Fitted Values and Residuals 32
  2-3b Algebraic Properties of OLS Statistics 32
  2-3c Goodness-of-Fit 35

- 2-4 Units of Measurement and Functional Form 36
  - 2-4a The Effects of Changing Units of Measurement on OLS Statistics 36
  - 2-4b Incorporating Nonlinearities in Simple Regression 37
  - 2-4c The Meaning of "Linear" Regression 40
- 2-5 Expected Values and Variances of the OLS Estimators 40
  - 2-5a Unbiasedness of OLS 40
  - 2-5b Variances of the OLS Estimators 45
  - 2-5c Estimating the Error Variance 48
- 2-6 Regression through the Origin and Regression on a Constant 50
- **2-7** Regression on a Binary Explanatory Variable 51
  - 2-7a Counterfactual Outcomes, Causality, and Policy Analysis 53

Summary 56

Key Terms 57

Problems 58

Computer Exercises 62

# **CHAPTER 3** Multiple Regression Analysis: Estimation 66

- 3-1 Motivation for Multiple Regression 67
  3-1a The Model with Two Independent Variables 67
  3-1b The Model with k Independent Variables 69
- 3-2 Mechanics and Interpretation of Ordinary Least Squares 70
  - 3-2a Obtaining the OLS Estimates 70
  - 3-2b Interpreting the OLS Regression Equation 71
  - 3-2c On the Meaning of "Holding Other Factors Fixed" in Multiple Regression 73
  - 3-2d Changing More Than One Independent Variable Simultaneously 74

| 3-2e ( | OLS Fitted Values and Residuals 7 | 4 |
|--------|-----------------------------------|---|
| n ne   | "Pautialling Out" Intermedation   | 1 |

- 3-2f A "Partialling Out" Interpretation of Multiple Regression 75
- 3-2g Comparison of Simple and Multiple Regression Estimates 75
- 3-2h Goodness-of-Fit 76
- 3-2i Regression through the Origin 79
- 3-3 The Expected Value of the OLS Estimators 79 3-3a Including Irrelevant Variables in a Regression
  - Model 83
    3-3b Omitted Variable Bias: The Simple Case 84
  - 3-3c Omitted Variable Bias: More General Cases 87
- 3-4 The Variance of the OLS Estimators 87
  - 3-4a The Components of the OLS Variances: Multicollinearity 89
  - 3-4b Variances in Misspecified Models 92
  - 3-4c Estimating σ<sup>2</sup>: Standard Errors of the OLS Estimators 93
- 3-5 Efficiency of OLS: The Gauss-Markov Theorem 95
- 3-6 Some Comments on the Language of Multiple Regression Analysis 96
- 3-7 Several Scenarios for Applying Multiple Regression 97
  - 3-7a Prediction 98
  - 3-7b Efficient Markets 98
  - 3-7c Measuring the Tradeoff between Two Variables 99
  - 3-7d Testing for Ceteris Paribus Group Differences 99
  - 3-7e Potential Outcomes, Treatment Effects, and Policy Analysis 100

Summary 102

Key Terms 104

Problems 104

Computer Exercises 109

## **CHAPTER 4** Multiple Regression Analysis: Inference 117

- 4-1 Sampling Distributions of the OLS Estimators 117
- 4-2 Testing Hypotheses about a Single Population Parameter: The t Test 120
  - 4-2a Testing against One-Sided Alternatives 122
  - 4-2b Two-Sided Alternatives 126
  - 4-2c Testing Other Hypotheses about  $\beta_j$  128
  - 4-2d Computing p-Values for t Tests 130

- 4-2e A Reminder on the Language of Classical Hypothesis Testing 132
- 4-2f Economic, or Practical, versus Statistical Significance 132
- 4-3 Confidence Intervals 134
- 4-4 Testing Hypotheses about a Single Linear Combination of the Parameters 136
- 4-5 Testing Multiple Linear Restrictions: The F Test 139
  - 4-5a Testing Exclusion Restrictions 139
  - 4-5b Relationship between F and t Statistics 144
  - 4-5c The R-Squared Form of the F Statistic 145
  - 4-5d Computing p-Values for F Tests 146
  - 4-5e The F Statistic for Overall Significance of a Regression 147
  - 4-5f Testing General Linear Restrictions 148
- 4-6 Reporting Regression Results 149
- 4-7 Revisiting Causal Effects and Policy Analysis 151

Summary 152

Key Terms 154

Problems 154

Computer Exercises 159

## **CHAPTER 5** Multiple Regression Analysis: OLS Asymptotics 163

- 5-1 Consistency 164
  5-1a Deriving the Inconsistency in OLS 167
- 5-2 Asymptotic Normality and Large Sample Inference 168
   5-2a Other Large Sample Tests: The Lagrange Multiplier Statistic 172
- 5-3 Asymptotic Efficiency of OLS 175

Summary 176

Key Terms 176

Problems 176

Computer Exercises 178

### **CHAPTER 6** Multiple Regression Analysis: Further Issues 181

- 6-1 Effects of Data Scaling on OLS Statistics 1816-1a Beta Coefficients 184
- 6-2 More on Functional Form 186 6-2a More on Using Logarithmic Functional Forms 186

| 6-2b Models with Quadratics  | 188       |         |
|------------------------------|-----------|---------|
| 6-2c Models with Interaction | Terms     | 192     |
| 6-2d Computing Average Part  | ial Effec | cts 194 |

- 6-3 More on Goodness-of-Fit and Selection of Regressors 195
  - 6-3a Adjusted R-Squared 196
  - 6-3b Using Adjusted R-Squared to Choose between Nonnested Models 197
  - 6-3c Controlling for Too Many Factors in Regression Analysis 199
  - 6-3d Adding Regressors to Reduce the Error Variance 200
- 6-4 Prediction and Residual Analysis 201
  - 6.4a Confidence Intervals for Predictions 201
  - 6-4b Residual Analysis 205
  - 6-4c Predicting y When log(y) Is the Dependent Variable 205
  - 6-4d Predicting y When the Dependent Variable Is log(y) 207

Summary 209

Key Terms 211

Problems 211

Computer Exercises 214

#### CHAPTER 7 Multiple Regression Analysis with Qualitative Information 220

- 7-1 Describing Qualitative Information 221
- **7-2** A Single Dummy Independent Variable 222
  - 7-2a Interpreting Coefficients on Dummy Explanatory Variables When the Dependent Variable Is log(y) 226
- 7-3 Using Dummy Variables for Multiple Categories 228
  - 7-3a Incorporating Ordinal Information by Using Dummy Variables 230
- 7-4 Interactions Involving Dummy Variables 232
   7-4a Interactions among Dummy Variables 232
   7-4b Allowing for Different Slopes 233
   7-4c Testing for Differences in Regression Functions across Groups 237
- 7-5 A Binary Dependent Variable: The Linear Probability Model 239
- 7-6 More on Policy Analysis and Program Evaluation 244
  - 7-6a Program Evaluation and Unrestricted Regression Adjustment 245

#### 7-7 Interpreting Regression Results with Discrete Dependent Variables 249

Summary 250

Key Terms 251

Problems 251

Computer Exercises 256

#### **CHAPTER 8 Heteroskedasticity 262**

- 8-1 Consequences of Heteroskedasticity for OLS 262
- 8-2 Heteroskedasticity-Robust Inference after OLS Estimation 263
  - 8-2a Computing Heteroskedasticity-Robust LM Tests 267
- 8-3 Testing for Heteroskedasticity 269
  8-3a The White Test for Heteroskedasticity 271
- 8-4 Weighted Least Squares Estimation 273
  - 8-4a The Heteroskedasticity Is Known up to a Multiplicative Constant 273
  - 8-4b The Heteroskedasticity Function Must Be Estimated: Feasible GLS 278
  - 8-4c What If the Assumed Heteroskedasticity Function Is Wrong? 281
  - 8-4d Prediction and Prediction Intervals with Heteroskedasticity 283

#### 8-5 The Linear Probability Model Revisited 284

Summary 286

Key Terms 287

Problems 287

Computer Exercises 290

## CHAPTER 9 More on Specification and Data Issues 294

- 9-1 Functional Form Misspecification 295
  - 9-1a RESET as a General Test for Functional Form Misspecification 297
  - 9-1b Tests against Nonnested Alternatives 298
- 9-2 Using Proxy Variables for Unobserved Explanatory Variables 299
  - 9-2a Using Lagged Dependent Variables as Proxy Variables 303
  - 9-2b A Different Slant on Multiple Regression 304
  - 9-2c Potential Outcomes and Proxy Variables 305
- 9-3 Models with Random Slopes 306
- 9-4 Properties of OLS under Measurement Error 308
   9-4a Measurement Error in the Dependent Variable 308

9-4b Measurement Error in an Explanatory Variable 310

9-5 Missing Data, Nonrandom Samples, and Outlying Observations 313

9-5a Missing Data 313

9-5b Nonrandom Samples 315

9-5c Outliers and Influential Observations 317

9-6 Least Absolute Deviations Estimation 321

Summary 323

Key Terms 324

Problems 324

Computer Exercises 328

#### PART 2

### Regression Analysis with Time Series Data 333

#### CHAPTER 10 Basic Regression Analysis with Time Series Data 334

10-1 The Nature of Time Series Data 334

10-2 Examples of Time Series Regression Models 335

10-2a Static Models 336

10-2b Finite Distributed Lag Models 336

10-2c A Convention about the Time Index 338

10-3 Finite Sample Properties of OLS under Classical Assumptions 339

10-3a Unbiasedness of OLS 339

10-3b The Variances of the OLS Estimators and the Gauss-Markov Theorem 342

10-3c Inference under the Classical Linear Model
Assumptions 344

10-4 Functional Form, Dummy Variables, and Index Numbers 345

10-5 Trends and Seasonality 351

10-5a Characterizing Trending Time Series 351

10-5b Using Trending Variables in Regression Analysis 354

10-5c A Detrending Interpretation of Regressions with a Time Trend 356

10-5d Computing R-Squared When the Dependent Variable Is Trending 357

10-5e Seasonality 358

Summary 360

Key Terms 361

Problems 361

Computer Exercises 363

## CHAPTER 11 Further Issues in Using OLS with Time Series Data 366

11-1 Stationary and Weakly Dependent Time Series 367

11-1a Stationary and Nonstationary Time Series 367

11-1b Weakly Dependent Time Series 368

11-2 Asymptotic Properties of OLS 370

11-3 Using Highly Persistent Time Series in Regression Analysis 376

11-3a Highly Persistent Time Series 376

11-3b Transformations on Highly Persistent Time Series 380

11-3c Deciding Whether a Time Series Is I(1) 381

11-4 Dynamically Complete Models and the Absence of Serial Correlation 382

11-5 The Homoskedasticity Assumption for Time Series Models 385

Summary 386

Key Terms 387

Problems 387

Computer Exercises 390

### CHAPTER 12 Serial Correlation and Heteroskedasticity in Time Series Regressions 394

12-1 Properties of OLS with Serially Correlated Errors 395

12-1a Unbiasedness and Consistency 395

12-1b Efficiency and Inference 395

12-1c Goodness-of-Fit 396

12-1d Serial Correlation in the Presence of Lagged Dependent Variables 396

12-2 Serial Correlation–Robust Inference after OLS 398

12-3 Testing for Serial Correlation 401

12-3a A t Test for AR(1) Serial Correlation with Strictly Exogenous Regressors 402

12-3b The Durbin-Watson Test under Classical Assumptions 403

12-3c Testing for AR(1) Serial Correlation without Strictly Exogenous Regressors 404

12-3d Testing for Higher-Order Serial Correlation 406

|  | Correcting for Serial Correlation with Strictly |  |  |  |  |
|--|-------------------------------------------------|--|--|--|--|
|  | Exogenous Regressors 407                        |  |  |  |  |
|  | 12-4a Obtaining the Best Linear Unbiased        |  |  |  |  |
|  | Fetimator in the AP/1\ Madel 400                |  |  |  |  |

12-4b Feasible GLS Estimation with AR(1)

12-4b Feasible GLS Estimation with AR(1) Errors 409

12-4c Comparing OLS and FGLS 411

12-4d Correcting for Higher-Order Serial Correlation 413

12-4e What if the Serial Correlation Model Is Wrong? 413

12-5 Differencing and Serial Correlation 414

12-6 Heteroskedasticity in Time Series Regressions 415

12-6a Heteroskedasticity-Robust Statistics 416

12-6b Testing for Heteroskedasticity 416

12-6c Autoregressive Conditional Heteroskedasticity 417

12-6d Heteroskedasticity and Serial Correlation in Regression Models 418

Summary 419

Key Terms 420

Problems 420

Computer Exercises 421

#### PART 3

### Advanced Topics 425

### CHAPTER 13 Pooling Cross Sections across Time: Simple Panel Data Methods 426

13-1 Pooling Independent Cross Sections across Time 427

13-1a The Chow Test for Structural Change across Time 431

13-2 Policy Analysis with Pooled Cross Sections 431

13-2a Adding an Additional Control Group 436
 13-2b A General Framework for Policy Analysis with Pooled Cross Sections 437

13-3 Two-Period Panel Data Analysis 43913-3a Organizing Panel Data 444

13-4 Policy Analysis with Two-Period Panel Data 444

13-5 Differencing with More Than Two Time Periods 447
13-5a Potential Pitfalls in First Differencing

13-5a Potential Pitfalls in First Differencing Panel Data 451 Summary 451

Key Terms 452

Problems 452

Computer Exercises 453

## CHAPTER 14 Advanced Panel Data Methods 462

14-1 Fixed Effects Estimation 463

14-1a The Dummy Variable Regression 466

14-1b Fixed Effects or First Differencing? 467

14-1c Fixed Effects with Unbalanced Panels 468

14-2 Random Effects Models 469

14-2a Random Effects or Pooled OLS? 473

14-2b Random Effects or Fixed Effects? 473

**14-3** The Correlated Random Effects Approach 474 14-3a *Unbalanced Panels* 476

14-4 General Policy Analysis with Panel Data 477
14-4a Advanced Considerations with Policy
Analysis 478

14-5 Applying Panel Data Methods to Other Data Structures 480

Summary 483

Key Terms 484

Problems 484

Computer Exercises 486

# CHAPTER 15 Instrumental Variables Estimation and Two-Stage Least Squares 495

15-1 Motivation: Omitted Variables in a Simple Regression Model 496

> 15-1a Statistical Inference with the IV Estimator 500

15-1b Properties of IV with a Poor Instrumental Variable 503

15-1c Computing R-Squared after IV Estimation 505

15-2 IV Estimation of the Multiple Regression Model 505

15-3 Two-Stage Least Squares 509

15-3a A Single Endogenous Explanatory Variable 509

15-3b Multicollinearity and 2SLS 511

15-3c Detecting Weak Instruments 512

15-3d Multiple Endogenous Explanatory Variables 513

15-3e Testing Multiple Hypotheses after 2SLS Estimation 513

| 15-4 | IV | Solutions | to | Errors-in-Variables Problems | 514 |
|------|----|-----------|----|------------------------------|-----|
|------|----|-----------|----|------------------------------|-----|

# 15-5 Testing for Endogeneity and Testing Overidentifying Restrictions 515

15-5a Testing for Endogeneity 515

15-5b Testing Overidentification Restrictions 516

15-6 2SLS with Heteroskedasticity 518

15-7 Applying 2SLS to Time Series Equations 519

15-8 Applying 2SLS to Pooled Cross Sections and Panel Data 521

Summary 522

Key Terms 523

Problems 523

Computer Exercises 526

## CHAPTER 16 Simultaneous Equations Models 534

16-1 The Nature of Simultaneous Equations Models 535

16-2 Simultaneity Bias in OLS 538

16-3 Identifying and Estimating a Structural Equation 539

16-3a Identification in a Two-Equation System 540 16-3b Estimation by 2SLS 543

16-4 Systems with More Than Two Equations 545
16-4a Identification in Systems with Three or More
Equations 545

16-4b Estimation 546

16-5 Simultaneous Equations Models with Time Series 546

16-6 Simultaneous Equations Models with Panel Data 549

Summary 551

Key Terms 552

Problems 552

Computer Exercises 555

## **CHAPTER 17** Limited Dependent Variable Models and Sample Selection Corrections 559

17-1 Logit and Probit Models for Binary Response 560

17-1a Specifying Logit and Probit Models 560

17-1b Maximum Likelihood Estimation of Logit and Probit Models 563

17-1c Testing Multiple Hypotheses 564

17-1d Interpreting the Logit and Probit Estimates 565

17-2 The Tobit Model for Corner SolutionResponses 57117-2a Interpreting the Tobit Estimates 572

17-2b Specification Issues in Tobit Models 578

17-3 The Poisson Regression Model 578

17-4 Censored and Truncated Regression Models 582 17-4a Censored Regression Models 583 17-4b Truncated Regression Models 586

17-5 Sample Selection Corrections 588

17-5a When Is OLS on the Selected Sample Consistent? 588

17-5b Incidental Truncation 589

Summary 593

Key Terms 593

Problems 594

Computer Exercises 596

### **CHAPTER 18 Advanced Time Series Topics 60**

18-1 Infinite Distributed Lag Models 605
18-1a The Geometric (or Koyck) Distributed Lag

Model 607

18-1b Rational Distributed Lag Models 608

18-2 Testing for Unit Roots 610

18-3 Spurious Regression 614

18-4 Cointegration and Error Correction Models 61618-4a Cointegration 616

18-4b Error Correction Models 620

18-5 Forecasting 622

18-5a Types of Regression Models Used for Forecasting 623

18-5b One-Step-Ahead Forecasting 624

18-5c Comparing One-Step-Ahead Forecasts 627

18-5d Multiple-Step-Ahead Forecasts 628

18-5e Forecasting Trending, Seasonal, and Integrated
Processes 631

Summary 635

Key Terms 636

Problems 636

Computer Exercises 638

## CHAPTER 19 Carrying Out an Empirical Project 642

19-1 Posing a Question 642

19-2 Literature Review 644

| 19-3 | Data  | Collection | 645     |
|------|-------|------------|---------|
|      | 19-3a | Deciding o | n the A |

ppropriate Data Set 645 19-3b Entering and Storing Your Data 646

19-3c Inspecting, Cleaning, and Summarizing Your Data 647

19-4 Econometric Analysis 648

19-5 Writing an Empirical Paper 651

19-5a Introduction 651

19-5b Conceptual (or Theoretical) Framework 652

19-5c Econometric Models and Estimation Methods 652

19-5d The Data 654

19-5e Results 655

19.5f Conclusions 656

19-5g Style Hints 656

Summary 658

Key Terms 658

Sample Empirical Projects 658

List of Journals 664

Data Sources 665

#### MATH REFRESHER A Basic Mathematical Tools 666

A-1 The Summation Operator and Descriptive Statistics 666

A-2 Properties of Linear Functions 668

A-3 Proportions and Percentages 671

A-4 Some Special Functions and Their Properties 672 A-4a Quadratic Functions 672 A-4b The Natural Logarithm 674

A-4c The Exponential Function 677

A-5 Differential Calculus 678

Summary 680

Key Terms 681

Problems 681

#### **MATH REFRESHER B Fundamentals of Probability**

**B-1** Random Variables and Their Probability Distributions 684

B-1a Discrete Random Variables 685

B-1b Continuous Random Variables 687

B-2 Joint Distributions, Conditional Distributions, and Independence 688

B-2a Joint Distributions and Independence 688

B-2b Conditional Distributions 690

B-3 Features of Probability Distributions 691

B-3a A Measure of Central Tendency: The Expected Value 691

B-3b Properties of Expected Values 692

B-3c Another Measure of Central Tendency: The Median 694

B-3d Measures of Variability: Variance and Standard Deviation 695

B-3e Variance 695

B-3f Standard Deviation 696

B-3g Standardizing a Random Variable 696

B-3h Skewness and Kurtosis 697

B-4 Features of Joint and Conditional

Distributions 697

B-4a Measures of Association: Covariance and Correlation 697

B-4b Covariance 697

B-4c Correlation Coefficient 698

B-4d Variance of Sums of Random Variables 699

B-4e Conditional Expectation 700

B-4f Properties of Conditional Expectation 702

B-4g Conditional Variance 704

B-5 The Normal and Related Distributions 704

B-5a The Normal Distribution 704

B-5b The Standard Normal Distribution 705

B-5c Additional Properties of the Normal Distribution 707

B-5d The Chi-Square Distribution 708

B-5e The t Distribution

B-5f The F Distribution 709

Summary 711

Key Terms 711

Problems 711

#### MATH REFRESHER C Fundamentals of **Mathematical Statistics**

C-1 Populations, Parameters, and Random Sampling 714 C-1a Sampling 714

C-2 Finite Sample Properties of Estimators 715 C-2a Estimators and Estimates 715 C-2b Unbiasedness 716

|       | C-2c The Sampling Variance of Estimators 718                                         |
|-------|--------------------------------------------------------------------------------------|
|       | C-2d Efficiency 719                                                                  |
| C-3   | Asymptotic or Large Sample Properties of Estimators 721                              |
|       | C-3a Consistency 721                                                                 |
|       | C-3b Asymptotic Normality 723                                                        |
| C-4   | General Approaches to Parameter Estimation 724                                       |
|       | C-4a Method of Moments 725                                                           |
|       | C-4b Maximum Likelihood 725                                                          |
|       | C-4c Least Squares 726                                                               |
| C-5   | Interval Estimation and Confidence Intervals 727                                     |
|       | C-5a The Nature of Interval Estimation 727                                           |
|       | C-5b Confidence Intervals for the Mean from a Normally<br>Distributed Population 729 |
|       | C-5c A Simple Rule of Thumb for a 95% Confidence<br>Interval 731                     |
|       | C-5d Asymptotic Confidence Intervals for Nonnormal<br>Populations 732                |
| C-6   | Hypothesis Testing 733                                                               |
|       | C-6a Fundamentals of Hypothesis Testing 733                                          |
|       | C-6b Testing Hypotheses about the Mean in a Normal<br>Population 735                 |
|       | C-6c Asymptotic Tests for Nonnormal Populations 738                                  |
|       | C-6d Computing and Using p-Values 738                                                |
|       | C-6e The Relationship between Confidence Intervals<br>and Hypothesis Testing 741     |
|       | C-6f Practical versus Statistical Significance 742                                   |
| C-7   | Remarks on Notation 743                                                              |
| Sum   | nmary 743                                                                            |
|       | Terms 744                                                                            |
|       | plems 744                                                                            |
| 1 100 | ole 144                                                                              |
|       |                                                                                      |

# ADVANCED TREATMENT D Summary of Matrix Algebra 749

D-1 Basic Definitions 749
D-2 Matrix Operations 750
D-2a Matrix Addition 750
D-2b Scalar Multiplication 750
D-2c Matrix Multiplication 751
D-2d Transpose 752

| D-2e Partitioned Matrix Multiplication | 752 |
|----------------------------------------|-----|
| D-2f Trace 753                         |     |
| D-2g Inverse 753                       |     |
|                                        |     |

- D-3 Linear Independence and Rank of a Matrix 754
- D-4 Quadratic Forms and Positive Definite Matrices 754
- D-5 Idempotent Matrices 755

D-7f F Distribution 757

- D-6 Differentiation of Linear and Quadratic Forms 755
- D-7 Moments and Distributions of Random Vectors 756
   D-7a Expected Value 756
   D-7b Variance-Covariance Matrix 756
   D-7c Multivariate Normal Distribution 756
   D-7d Chi-Square Distribution 757
   D-7e t Distribution 757

Summary 757 Key Terms 757 Problems 758

## ADVANCED TREATMENT E The Linear Regression Model in Matrix Form 760

- E-1 The Model and Ordinary Least Squares Estimation 760 E-1a The Frisch-Waugh Theorem 762
- E-2 Finite Sample Properties of OLS 763
- E-3 Statistical Inference 767
- E-4 Some Asymptotic Analysis 769
  E-4a Wald Statistics for Testing Multiple
  Hypotheses 771

Summary 771
Key Terms 771
Problems 772
Answers to Going Further Questions 775
Statistical Tables 784
References 791
Glossary 797
Index 812