Contents

-		4.7.1		2.2
Fo	rewoi	rd		page xiii
Pre	eface			xv
1	A Vi	ew of I	River Basins	1
	1.1	Introd	uction	1
	1.2	River I	Basin Geomorphology: A Brief Review	4
		1.2.1	Ordering of the Channel Network	4
		1.2.2	Drainage Density and the Hillslope Scale	7
		1.2.3	Relation of Area to Length	9
		1.2.4	Relation of Area to Discharge	11
		1.2.5	Relation between Magnitude and Area	12
		1.2.6	Stream Channel Geometry	12
		1.2.7	The Width Function	15
		1.2.8	The Three-Dimensional Structure of	
			River Basins	18
		1.2.9	River Basins from Digital Elevation Models	19
		1.2.10	Slope-Area Scaling	26
		1.2.11	Empirical Evidence	31
		1.2.12	Where Do Channels Begin?	34
		1.2.13	Experimental Fluvial Geomorphology	44
	1.3	Statist	ical Models of Network Evolution	47
		1.3.1	Introduction	47
		1.3.2	Random-Walk Drainage Basin Models	49
		1.3.3	The Random Topology Model	55
		1.3.4	Limitations of Statistical Models	63
	1.4	Detern	ninistic Models of Drainage Network	
		Develo	opment	63
		1.4.1	Introduction	63
		1.4.2	Models Based on Junction Angle	
			Adjustments	64
		1.4.3	Models of Erosion and the Evolution of	
			River Networks	67
		1.4.4	A Process-Response Model of	
			Catchment and Network Development	77

vii

0						
1 0	n	t i	D	n	t	C
U U						

		1.4.5	Detachment-Limited Basin Evolution	83
		1.4.6	Limitations of Deterministic Models	93
	1.5	Lattice	Models	95
2	Frac	tal Cha	aracteristics of River Basins	99
	2.1	Introdu	uction	99
		2.1.1	Fractals and Fractal Dimensions	99
		2.1.2	The Box-Counting Dimension	105
		2.1.3	The Cluster Dimension or Mass Dimension	106
		2.1.4	The Correlation Dimension	108
		2.1.5	Self-Similarity and Power Laws	109
	2.2	Self-Si	milarity in River Basins	110
	2.3	Horton	i's Laws and the Fractal Structure of	
		Draina	ge Networks	120
	2.4	Peano'	s River Basin	123
	2.5	Power	Law Scaling in River Basins	128
		2.5.1	Scaling of Slopes	129
		2.5.2	Scaling of Contributing Areas,	
			Discharge, and Energy	133
	2.6	Self-Si	milarity of Topographic Contours	145
	2.7	Self-A:	ffinity in River Basins	145
		2.7.1	Brownian Motion and Fractional	110
			Brownian Motion	146
		2.7.2	Power Spectrum and Correlation	140
		272	Characterization of Solf Affine Records	149
		2.7.3	Solf Affine Characteristics of	152
		2.7.4	Tonographic Transacts	157
		275	Self-Affine Characteristics of Width Functions	160
		2.7.6	Other Self-Affine Characterizations	161
		2.7.7	Self-Affine Scaling of Watercourses	165
		2.7.8	Self-Affine Scaling of Basin Boundaries	168
	20	Troppo	seta Contoura Watercouraça and	100
	2.0	Mount	ain Ridges as Parts of the Basin Landscape	171
	2.9	Hack's	Law, the Self-Affinity of Basin	1/1
		Bound	laries, and the Power Law	
		of Con	tributing Areas	174
		2.9.1	Does Hack's Law Imply Elongation?	174
		2.9.2	Power Law of Contributing Areas,	
			Hack's Relationship, and the	
			Self-Affinity of Basin Boundaries	179
		2.9.3	Hack's Law and the Probability	
			Distribution of Stream Lengths to the Divide	182
	2.10	Genera	alized Scaling Laws for River Networks	185
		2.10.1	Scaling of Areas	186
		2.10.2	Scaling of Lengths	190

			- Contents	
3	Mult	tifractal Characteristics of River Basins	196	
	3.1	Introduction	196	
	3.2	Peano's Basin and the Binomial Multiplicative		
		Process	198	
	3.3	Multifractal Spectra	208	
	3.4	Multifractal Spectra of Width Functions	220	
	3.5	Multiscaling and Multifractality	223	
		3.5.1 Other Multifractal Descriptors	228	
	3.6	Multifractal Topographies	232	
		3.6.1 Fractal versus Multifractal Descriptors	232	
		3.6.2 Generalized Variogram Analysis	238	
	37	Random Cascades	2/1	
	5.7	371 Canonical Random Cascados	241	
		3.7.1 Canonical Kandom Cascades and	242	
		Width Functions	247	
		width Functions	247	
4	Onti	mal Channel Networks: Minimum Energy an	hd	
-	Frac	tal Structures	251	
	41	Introduction	251	
	4.1	The Connectivity Issue	252	
	4.3	Principles of Energy Expenditure in Drainage	232	
	1.0	Networks	253	
	4.4	Energy Expenditure and Optimal Network	200	
		Configurations	254	
	4.5	Stationary Dendritic Patterns in a Potential	Her from such	
		Force Field	259	
	4.6	Scaling Implications of Optimal Energy		
		Expenditure	263	
	4.7	Optimal Channel Networks	267	
	4.8	Geomorphologic Properties of OCNs	278	
	4.9	Fractal Characteristics of OCNs	279	
	4.10	Multifractal Characteristics of OCNs	285	
	4.11	Multiscaling in OCNs	287	
	4.12	Fractals in Nature: Least Energy Dissipation	Bata abus 204	
	1 10	Structures?	289	
	4.13	On Feasible Optimality	292	
	4.14	Ochs, Hillslope, and Channel Processes	298	
	4.10	And River Regime OCM2	303	
	4.10	Hack's Polation and OCNs	308	
	4.18	Renormalization Groups for OCNs	315	
	4.10	OCNs with Open Boundary Conditions	310	
	4.20	Disorder-Dominated OCNs	323	
	4.21	Thermodynamics of OCNs	331	
	4.22	Space–Time Dynamics of Optimal Networks	339	
	4.23	Exact Solutions for Global Minima and	nund and solar	
		Feasible Optimality	347	

0				
•	01	nt	er	its
-	UJ		U I.	110

5 Self	Organized Fractal River Networks	356
5.1	Introduction	356
5.2	Self-Organized Criticality	358
5.3	SOC Systems in Geophysics	362
5.4	On Forest Fires, Turbulence, and Life at the Edge	366
5.5	Sandpile Models and Abelian Groups	370
5.6	Fractals and Self-Organized Criticality	377
5.7	Self-Organized Fractal Channel Networks	379
5.8	Optimality of Self-Organized River Networks	389
5.9	River Models and Temporal Fluctuations	393
5.10	Penermalization Croups for SOC Landscapes	397
5.12	Thermodynamics of Fractal Networks	404
5 13	Self-Organized Networks and Feasible Optimality	403
0.10	Sen-Organized Networks and reasible Optimality	410
6 On 1	Landscape Self-Organization	417
6.1	Introduction	417
6.2	Slope Evolution Processes and Hillslope Models	419
	6.2.1 The Effects of Nonlinearity	423
	6.2.2 The Effects of a Driving Noise	425
6.3	Landscape Self-Organization	429
6.4	On Heterogeneity	436
6.5	Fractal and Multifractal Descriptors of Landscape	s 444
6.6	Geomorphologic Signatures of Varying Climate	457
7 Geo	morphologic Hydrologic Response	466
7.1	Introduction	466
7.2	Travel Time Formulation of Transport	469
7.3	Geomorphologic Unit Hydrograph	477
7.4	Travel Time Distributions in Channel Links	487
7.5	Geomorphologic Dispersion	493
7.6	Hortonian Networks	498
7.7	Width Function Formulation of the GIUH	504
7.8	Can One Gauge the Shape of a Basin?	508
	7.8.1 Estimation of Basin Shape from the Width Function	509
	7.8.2 Geomorphologic Hydrologic Response	503
7.9	On the Spatial Organization of Soil Moisture	
100	Fields	514
	7.9.1 Introduction	514
	7.9.2 The Effect of Aggregation on the	SONE SELE
	Statistics of the Soil Moisture Field	518
Defe	# 5.5 Hack educer and the Post State of the month	SOUT TEA
Keferen	Ces	525
Index	t Solutions instituted Attains and a solution of	540

X