CONTENTS

Preface	XXV
How to use the workbooks, exercises, and problems	xxxi
Temperature, pressure, molar volume, and equilibrium	1
Introduction	1
System and environment	1
Temperature and thermal equilibrium	2
Thermometer	2
Temperature scales	3
Pressure and mechanical equilibrium	7
Calculating the pressure in a cylinder	8
The units of pressure	8
The units Torr, atm, bar, and psi	9
Conversion between units	10
Volume, density, and molar volume	11
Intensive and extensive quantities	12
Equilibrium	13
Equilibrium and environment	13
Supplement 1.1 An excerpt from Fahrenheit's article	14
	Temperature, pressure, molar volume, and equilibrium Introduction System and environment Temperature and thermal equilibrium Thermometer Temperature scales Pressure and mechanical equilibrium Calculating the pressure in a cylinder The units of pressure The units Torr, atm, bar, and psi Conversion between units Volume, density, and molar volume Intensive and extensive quantities Equilibrium Equilibrium and environment

	Supplement 1.2 Origin of the pressure units atmosphere and Torr	16
	Problems	19
	Tioblems	10
Chapter 2	The equation of state	21
	Introduction	21
	The state of a gas or a liquid at equilibrium	21
	The equation of state	22
	Solids are different	22
	The ideal gas equation	24
	Units	24
	When and why the ideal gas law is valid	26
	The van der Waals equation of state	28
	Accurate equations of state	29
	Summary and perspective	30
	Problems	31
Chapter 3	How to use the equation of state	33
	Calculate pressure when you know molar volume and	
	temperature	33
	Why we calculate pressure	33
	How to calculate pressure	34
	Calculate molar volume when you know pressure and	
	temperature	36
	Why we calculate the molar volume	36
	An example of molar volume calculation	38
	Calculate temperature when you know molar volume	
	and pressure	40
	When such calculations are needed	40
	Summary of Chapters 1–3	40
	Problems	41
	Supplement 3.1 How to get your own equation of state	45
	Least squares fitting	50
	Why we use the square of the error	50

	Determining the parameters in the van der Waals	
	equation	53
	Problems	56
Chantan 4	The same of the project was a few and the same of the	50
Chapter 4	Thermodynamic transformations	59
	Definition and examples of thermodynamic transformations	59
	Non-equilibrium transformations	61
	Initial and final states	61
	The path of the transformation	62
	Equilibrium transformations	62
	Why we study equilibrium transformations	64
	Supplement 4.1. More about equilibrium transformations and their paths	65
	Two equilibrium transformations with the same initial	00
	and final state but different paths	65
	Heat exchanged at constant volume	190
Chapter 5	Work	69
	Introduction	69
	The definition of work	70
	The sign convention	71
	Units	71
	Work is an extensive quantity	72
	No change in volume, no work	72
	Work is performed against an opposing force	73
	There are many ways of exchanging work	73
	How to calculate the work in a finite transformation	73
	The work performed in a finite transformation	73
	Work performed in an isothermal transformation	76
	What an isothermal transformation is	76
	The work performed in an isothermal expansion	77
	A numerical calculation of isothermal work	78
	The work performed in an isobaric transformation	81
	What an isobaric transformation is	81
	A numerical calculation of the work performed in	
	an isobaric transformation	81

	The work performed in a transformation depends on	0.0
	the path	83
	Work is not a function of state	86
	Problems	87
Rai	pter 4 Thermodynamic sansformasions	rO
Chapter 6	Heat	91
	What is heat?	91
	The caloric theory	91
	What is transferred from a hot body to	
	a cold one	93
	How to measure the amount of heat	94
	Heat and work are equivalent	94
	The amount of heat has a sign	95
	Thermal coefficients: definitions	95
	Heat exchanged at constant pressure	96
	Heat exchanged at constant volume	97
	The heat exchanged when pressure changes and	
	temperature is constant	97
	The heat exchanged in a general transformation	98
	Information regarding the thermal coefficients	99
	Heat capacity at constant pressure	99
	The temperature dependence of C_p	101
	The pressure dependence of C_p	103
	Heat capacity at constant volume	104
	Calculations of the heat exchanged in simple	
	transformations	106
	The heat transferred when a system is heated at	
	constant volume	108
	Heat exchange when two bodies of different	
	temperatures are brought into contact	109
	The number of moles	111
	Problems	114
	Supplement 6.1. Heat is a form of motion: an experiment in	
	boring cannon	115
	Supplement 6.2. Joseph Black, heat capacity	122

	Supplement 6.3. A more extensive look at heat theory	
	and calculations	127
	Information regarding ℓ_p and ℓ_v	129
	ℓ_p and ℓ_v for an ideal gas	130
	The heat exchanged in an infinitesimal	
	transformation	131
	The heat exchanged in a finite transformation	131
	The heat exchanged in an isothermal compression:	
	general equation	132
	The heat exchanged in an isothermal compression of	
	an ideal gas	133
	The heat exchanged in an isothermal compression of	
	a van der Waals gas	134
	The case of a real gas: implementation	137
	A numerical evaluation of q_T	138
	Problems	140
Chapter 7	Reversible and irreversible transformations	143
173	Introduction	143
	Definition	144
	Heat transfer	144
	Diffusion	145
	An equilibrium transformation is reversible	146
Chapter 8	Path-dependent and path-independent	
071	quantities	149
	Path-independent line integrals	149
	Line integrals in thermodynamics	149
	Most line integrals depend on the path (the line)	153
	Path-independent integrals: an example	154
	Exact differentials	156
	Path-independent line integrals: theorems	157
	Applications to thermodynamics	161
	Work and heat depend on path	161
	A proof that $\int \delta W$ depends on path	162
	Exact differentials and functions of state	163

Chapter 9	First and second laws of thermodynamics	165
	The formulation of the laws	165
	Introduction	165
	The First Law	165
	The Second Law	166
	The Third Law	166
	Common features of energy and entropy	167
	fdU and fdS are path-independent	167
	U and S are functions of state	168
	Maxwell relations	168
	Adding a constant to entropy or energy causes	
	no measurable change	169
	U and S are extensive properties	170
	A few comments about the First Law	170
	Energy conservation	170
	The First Law today	174
	A few comments about the Second Law	175
	The direction of a transformation	175
	Impossible processes	177
	Why this is useful	177
Chapter 10	Helmholtz and Gibbs free energies	179
	Introduction	179
	Why do we need other functions besides entropy?	179
	A convenient form for the First and Second Laws	179
	Second Law for a transformation keeping U and V	
	constant	180
	Helmholtz free energy A	182
	Second Law in terms of changes in V and T	182
	Transformations at constant T and V	183
	Using A: a hint	184
	Gibbs free energy G	184
	The definition of Gibbs free energy	184
	Some properties of Gibbs free energy	185

	The change of G in a transformation in which T and p are held constant	185
	Using Gibbs free energy: a hint	186
Chapter 11	How to calculate the change of entropy	
chapter	in an equilibrium transformation	187
	Introduction	187
	Which variable to use	187
	The variables T and p : theory	188
	The change ds of entropy when pressure changes	
	by dp and temperature by dT	189
	Notation for partial derivatives	189
	Maxwell's method	191
	The derivative $(\partial s/\partial p)_T$	191
	The derivative $(\partial s/\partial T)_p$	192
	Combine these results to get an expression for ds	193
	The change of entropy in a transformation in which	
	T and p change by a finite amount	193
	The variables T and v : theory	193
	The calculation of $(\partial s/\partial v)_T$	194
	The change in entropy when both T and v change	195
	The change in entropy in a finite transformation	195
	Calculations of entropy change in various	
	transformations	196
	Entropy change in an isobaric transformation	196
	The change of entropy in an isothermal	
	transformation	198
	The change of entropy in a general transformation	202
	The change of entropy: numerical results	204
	How to use the tables of data to calculate entropy	
	changes	204
	Problems	205
	Supplement 11.1. Using Maxwell's method to derive useful	
	equations	208
	Using Maxwell equations	208

	Supplement 11.2. Obtaining new equations by changing	
	variables	211
	An equation for $(\partial v/\partial T)_p$	212
	A more general method for calculating $(\partial v/\partial T)_p$	213
	An equation for $C_p - C_v$	214
	Supplement 11.3. Adiabatic transformations	215
	The transformation path in an adiabatic	
	transformation	216
	The equation for the final temperature	217
	An example of adiabatic compression	218
Chapter 12	Enthalpy and energy change during	
	a thermodynamic transformation	219
	Introduction	219
	Heat and enthalpy	221
	The connection between the enthalpy change and heat	222
	Heat and energy	222
	How to calculate the enthalpy change in a transformation:	
	theory	223
	The change of enthalpy in an infinitesimal	
	transformation	223
	The change of enthalpy in a finite transformation	225
	Choosing a path	225
	How to calculate the enthalpy change in a transformation:	
	an example	227
	The change of enthalpy Δh_A when T changes and	
	p is constant (path A)	228
	The change of enthalpy Δh_B when pressure changes	
	and temperature is held constant	229
	The first difficulty	229
	The second difficulty	231
	The final result for Δh_B	233
	An example of a calculation of Δh_B	234
	The order of magnitude of Δh_B	234
	The use of tables to calculate enthalpy changes with	
	temperature	235

	Supplement 12.1. Energy changes in a thermodynamic	
	transformation	238
	The change of energy in an infinitesimal transformation	
	in which T and v are changed	238
	The change of energy in a finite transformation in which	
	T and v are changed	238
	Another way of calculating energy changes	239
	Supplement 12.2. Isenthalpic transformations	240
	This transformation takes place without a change	
	of enthalpy	241
	The change of temperature caused by an isenthalpic	
	transformation	242
	Isenthalpic transformations are used for cooling	243
	Ideal gas	246
	pter 14. The change of chemical potential during	
Chap	ter 13 Thermochemistry	247
	Introduction	247
	Definition of the heat of reaction	248
	Two reactions used as examples	248
	The definition of the heat of reaction	249
	The initial state	249
	The final state	249
	Sign convention	250
	The presentation of data: standard state	250
	The connection between the heat of reaction and	
	the enthalpy of the participants	251
	Enthalpy change in a reaction	252
	The dependence of the heat of reaction on temperature	
	and pressure	255
	Enthalpy change in a transformation from σ_i to σ_f	255
	The heat of reaction at T_f and p_f	256
	The change of the heat of reaction with temperature	257
	The change of heat of reaction with pressure	257
	An example: the heat of reaction for ammonia synthesis	258
	The heat of reaction ΔH	259

	The temperature dependence of the heat of reaction	260
	The heat of reaction at 623.15 K and 394.8 atm	262
	Calculating the heat of a reaction from heats of formation	
	or combustion	264
	Heats of formation: definition	266
	The connection between the heat of reaction and	
	the heats of formation of the compounds	266
	Where to get heats of formation	269
	The use of heats of combustion to calculate heats of reaction	270
	Supplement 13.1. Calculating the heat of one reaction	
	from the heats of other reactions	274
	Problems	281
Chapter 14	The change of chemical potential during	
	an equilibrium transformation	285
	Introduction	285
	The change of chemical potential calculated with Eq. 14.4	286
	How to evaluate $\Delta \mu_1 \equiv \mu(T_f, p_i) - \mu(T_i, p_i)$	287
	An example of evaluation of $\Delta \mu_1 \equiv \mu(T_f, p_i)$	
	$\mu(T_i,p_i)$	288
	How to evaluate $\Delta \mu_2 \equiv \mu(T_f, p_f) - \mu(T_f, p_i)$	289
	Calculating $\Delta \mu = \mu(130 \text{ K}, 600 \text{ atm})$	
	$-\mu(298.15 \text{ K}, 1 \text{ atm})$	293
	Additional material about chemical potential	295
	The pressure dependence of the chemical potential of	
	an ideal gas	295
	Fugacity	295
	The dependence of chemical potential on temperature	296
	Calculating μ from $\mu = h - Ts$	297
	Problems	298
Chapter 15	The chemical potential of a compound	
	in a mixture	301
	General remarks	301
	Infinitesimal transformations	302

	The chemical potential of a compound in	
	a mixture	303
	The change of Gibbs free energy when I change	
	temperature, pressure, and composition	303
	Change of variables	304
	The chemical potential of ideal mixtures	307
	The partial pressure of a gas in an ideal mixture	307
	The chemical potential of a gas in an ideal	
	mixture	308
	A few words about Josiah Willard Gibbs	309
Chanter 16	Mixtures: partial molar quantities and	
Chapter 10	activities	311
		311
	Partial molar quantities	311
	The correct formula	314
	Partial molar volume is an intensive quantity	316
	Other partial molar quantities	317
	Partial molar enthalpy and the heat of mixing	318
	Chemical potential as a partial molar quantity:	
	the Gibbs–Duhem equation	319
	Equations similar to the Gibbs-Duhem equation for	
	other partial molar quantities	321
	How to determine partial molar quantities from	
	measurements	322
	Relations among partial molar quantities	325
	The composition dependence of chemical potential:	
	ideal solutions	327
	The definition of an ideal solution	327
	The change of volume when we mix compounds to	
	form an ideal solution	327
	The enthalpy of an ideal mixture	328
	The heat of mixing to form an ideal solution	329
	The entropy of mixing to form an ideal solution	329
	Chemical potential of real solutions: the activity and	
	the reference potential	330

Chapter 17	Chemical equilibrium	335
	Introduction	335
	Reactants and products	336
	Stable and metastable chemical equilibrium	337
	The extent of reaction and the composition of a reacting	
	mixture	339
	The extent of reaction	339
	Mass conservation	341
	Molar fractions	341
	Examples of the use of the extent of reaction	342
	Some properties of the extent of reaction	345
	The equilibrium conditions and the direction of	
	a reaction 29131V1756	346
	The equilibrium conditions	346
	The direction of a chemical reaction	347
	Chemical affinity of a reaction	348
	Geometric interpretation	349
	How to use affinity to answer practical chemistry questions	351
	The equilibrium condition in terms of chemical potentials	
	and equilibrium constant	352
	The reaction affinity in terms of chemical potential	352
	The affinity of a reaction for ideal mixtures	353
	The equilibrium conditions for real mixtures	356
Chapter 18	Chemical equilibrium: the connection between the equilibrium constant and	
	composition	359
	Introduction	359
	How to calculate the equilibrium constant from a measurement of the equilibrium concentration of	
	one species	361
	How to calculate the equilibrium composition when you	
	know the equilibrium constant and the initial number of moles	363

	The dependence of the extent of reaction on the initial	
	number of moles	365
	The role of the initial number of moles	365
	Supplement 18.1. Another example of composition	
	calculations	371
	Supplement 18.2. A second example and error analysis	373
	Supplement 18.3. The direction of a reaction	379
	A metastable state	381
Chapter 19	Chemical equilibrium: how to calculate K	
0.5) 423	from $\Delta G^0 = -RT \ln K$	383
	Calculate $\Delta G^0(T,p)$ from ΔG of formation of the compound	ls 384
	An analogy with ΔH	384
	How to calculate ΔG^0	385
	Calculate ΔG^0 from $\Delta G^0(T,p) = \Delta H^0(T,p) - T \Delta S^0(T,p)$	
	the method	389
	Calculation of $\Delta H^0(T,p)$	391
	Calculation of ΔS^0	391
	Calculate ΔG^0 from $\Delta G^0 = \Delta H^0 - T\Delta S^0$: the change of ΔG^0	K
	with temperature	393
	Calculation of ΔH^0	394
	Calculation of $\Delta S^0(T,p)$	396
	Calculation of $\Delta G^0(T,p)$	397
	Calculate ΔG^0 and K : the change of equilibrium constant	
	with pressure	398
	Calculation of $\mathcal{I}_H(H_2O; 1000 \text{ K}, p)$.	400
	Numerical results for the molar volumes and \mathcal{I}_H	402
	Calculation of $\mathcal{I}_S(i; 1000 \ K, p)$	402
	Calculate $\Delta G^0(T, p)$ from $\Delta G^0(T, p) = \sum_i \nu(i) \mu^0(i; T, p)$	404
	Problems	406
Chapter 20	Chemical equilibrium: dependence of	
rion 440	equilibrium constant on temperature	
	and pressure	409
	The change of the equilibrium constant K with temperature	е
	and pressure: the equations	410

	The change of equilibrium constant with temperature	410
	The change of equilibrium constant with pressure	411
	Le Chatelier's Principle	411
	The formulation of the principle	411
	The derivation of the principle	412
	Calculations of the change of the equilibrium constant <i>K</i>	
	with temperature	414
	The equilibrium composition at different temperatures	
	and initial compositions	419
	The change of the equilibrium constant K with pressure	423
	The Use of $(\partial \ln K/\partial p)_{T,n} = -\Delta V^0/RT$ (Eq. 20.5)	423
	Calculation of the molar volumes	425
	Calculation of $\mathcal{I}_{v}(i; T = 1000 \text{ K}, p)$	426
	Calculation of the equilibrium constant at various	
	pressures	427
	How to calculate the change of equilibrium constant when	
	both the temperature and pressure are changed	428
	Summary	430
Chapter 21	Chemical equilibrium of coupled reactions	431
	Introduction	431
	Mass balance and equilibrium conditions for coupled	
	reactions	432
	Mass balance	432
	Equilibrium conditions	432
	The equilibrium constants	434
	The calculation of ΔG_1^0 , ΔG_2^0 , K_1 , and K_2	435
	Calculation of equilibrium composition for coupled	
	reactions	435
	The molar fractions	436
	The number of moles	436
	The equilibrium constants	439
	Calculation of the equilibrium extents of reaction	440
	Equilibrium composition	440
	Some interesting complications for heterogeneous	
	reactions	440

	Generalization	441
	Stoichiometric coefficients $v(i, \alpha)$	442
	Number of moles and molar fractions	442
		443
	The equilibrium constants	444
	Another application	
	The results of the calculations	444
	Using Le Chatelier's principle	447
Chapter 22	Phase transitions in one-component systems:	
tion 434	the phenomena	451
	Introduction	451
	The phenomena taking place during a phase transition	452
	This process is reversible	455
	The coexistence curve	455
	The complete phase diagram	457
	How we use phase diagrams	459
	The vapor pressure	459
Chapter 23		. 530
	the equilibrium conditions	463
	The equilibrium condition for coexisting phases	463
	The equilibrium (coexistence) condition	464
	How to use this equation	465
	Phase stability	466
	The analogy to a chemical reaction	468
	The Clapeyron equation	468
	The entropy of transformation is connected to the	
	heat of transformation	471
	Supplement 23.1. The evaporation of droplets and bubble	s,
	and the mysteries of nucleation	472
	There is an interface between the phases	472
	The stability of a liquid droplet	473
	The phase transition is a change of radius	474
	If $\mu(g) < \mu(\ell)$, the droplet is unstable	475
	The strange "stability" when $\mu(\ell;T,p) < \mu(g;T,p)$	476

	A metastable equilibrium Nucleation	477 478
	Heterogeneous nucleation	479
	The equilibrium one destruction of the	
Chapter 24	Phase transitions in one-component systems: how to use the equilibrium conditions	481
	Introduction	481
	Transitions involving two condensed phases Melting	483 483
	An example of a solid-solid phase transformation	484
	Transitions involving one condensed phase and	
	one vapor phase	487
	A simplified theory	488
	Using the Clapeyron equation to calculate the vapor	
	pressure of NH_3	495
	Another kind of phase diagram	497
Chapter 25	Phase equilibria in binary systems:	
stems:	the phenomena	501
	Introduction	501
	The independent variables	502
	How to make a constant-pressure phase diagram for the	
	liquid-vapor equilibrium in a two-component system	504
	Making a constant-pressure phase-diagram	504
	The full liquid-vapor phase diagram at constant	
	pressure	509
	How much material is there in each coexisting phase	511
	Systems with an azeotrope	514
	How to make a constant-temperature liquid-vapor	
	phase diagram	516
Chapter 26	Equilibrium conditions for binary systems with two phases: application to vapor-liquid	
	equilibrium	519
	Introduction	519

	A metastable equilibrium	477
	Nucleation	478
	Heterogeneous nucleation	479
Chapter 24	Phase transitions in one-component systems:	
444	how to use the equilibrium conditions	481
	Introduction	481
	Transitions involving two condensed phases	483
	Melting	483
	An example of a solid-solid phase transformation	484
	Transitions involving one condensed phase and	
	one vapor phase	487
	A simplified theory	488
	Using the Clapeyron equation to calculate the vapor	
	pressure of NH_3	495
	Another kind of phase diagram	497
Chapter 25	Phase equilibria in binary systems:	
stems;	the phenomena	501
	Introduction	501
	The independent variables	502
	How to make a constant-pressure phase diagram for the	
	liquid-vapor equilibrium in a two-component system	504
	Making a constant-pressure phase-diagram	504
	The full liquid–vapor phase diagram at constant	
	pressure	509
	How much material is there in each coexisting phase	511
	Systems with an azeotrope	514
	How to make a constant-temperature liquid-vapor	516
	phase diagram	516
Chapter 26	Equilibrium conditions for binary systems	
	with two phases: application to vapor-liquid	
	equilibrium	519
	Introduction	519

	The equilibrium conditions for two coexisting phases	
	in a binary system	520
	Derivation of the equilibrium condition	520
	The number of independent variables	522
	The phase rule	523
	Application to liquid-vapor equilibrium: ideal mixtures	524
	From equilibrium conditions to phase diagrams	524
	Phase diagrams for ideal binary mixtures	525
	Replace $\mu_i^0(g)$ and $\mu_i^0(\ell)$ with measurable quantities	525
	Raoult's Law	526
	The vapor pressure $p_i^0(T)$ of the pure compound	527
	Calculation of the dew line and bubble line for a mixture	3
	of carbon disulphide and benzene	529
	The dew line	529
	The bubble line	529
	Numerical calculations and comparison	530
	Supplement 26.1. The liquid-vapor equilibrium when the	
	liquid is a real solution and the vapor is an ideal mixture	9
	of ideal gases	535
	Activity coefficients	536
	The dependence of activity coefficient on molar	
	fraction	537
	How to calculate the phase diagram at constant	
	temperature if you know the activity	
	coefficients	538
	The calculation of the activity coefficients from data	
	on liquid–vapor equilibrium	541
	What is wrong with the Margules equation?	541
Chapter 27	Electrolyte solutions	547
	Introduction	547
	Electrolyte solutions	547
	Long-range interactions	548
	Mass balance and independent variables	550
	Notation, mass balance, and charge conservation	550
	Charge neutrality	551
	Course of Company Old District Office	

	Equilibrium conditions	552
	The change in Gibbs free energy	552
	A new set of variables	553
	The dissociation equilibrium	554
	Equilibria involving two phases	555
	A discussion of various chemical potentials	557
	Why $\mu(+)$ and $\mu(-)$ are not relevant individually	558
	Activity and activity coefficient	559
	Molality	559
	The definition of activity in the molality scale	561
	The chemical potential of the electrolyte	562
	The Debye-Hückel theory of electrolyte solutions	566
	Formulae and use	566
Cl	- voimmerical culculations and demonstrate	495
Chapter 28	Galvanic cells: phenomena	571
	Introduction	571
	Galvanic cells	572
	How to make a Daniell cell	572
	Daniell cell: the cell reactions	573
	Daniell cell: the half reaction at the Cu electrode	574
	Daniell cell: the half reaction at the Zn electrode	575
	Contact potentials	576
	At equilibrium, the voltage inside each conducting	
	phase is constant (in space)	577
	Daniell cell in an open circuit	578
	Daniell cell in a closed circuit	580
	The battery turns chemical energy into electric work	580
	Some practice with cell symbols	582
	Electrolysis	585
	Supplement 28.1. Fuel cells	586
	A modern fuel cell	590
	The electrolyte	592
	The cathode	592
	The macro factors	594

	Supplement 28.2. A brief history of electrolytic	
	galvanic cells	595
	Supplement 28.3. One- and two-euro coins	596
Chapter 29	Galvanic cells: equilibrium conditions	597
	Introduction	597
	The equilibrium conditions for a charged species in two	
	conducting phases in contact	598
	A review of the thermodynamics of mixtures	600
	Electrolyte solutions in the absence of an electric field	601
	Electrolyte solutions in the presence of an electrostatic	
	potential	601
	The change of the Gibbs free energy	603
	The equilibrium conditions for charged particles in two	
	adjoining phases	603
	The contact potential of two metals	603
	The equilibrium conditions for a galvanic cell	605
	When a galvanic cell is in equilibrium	605
	The equilibrium condition in a cell: example	605
	The interpretation of the equilibrium condition	608
	The equilibrium composition in the cell	609
	The determination of the standard electromotive force E_0	612
	The experimental determination of E_0	612
	Determination of E_0 for the Cell $Pt(I)$,	
	$H_2(1 \ atm) \mid HCl(m) \mid Hg_2Cl_2(s)$	614
	Determine the standard emf of the Cell $Pt(I)$, $H_2(1 atm)$	
	HCl(m) HCl(m) AgCl(s), Ag Pt(II)	615
	Going beyond the Debye–Hückel theory	618
	Half-cell electromotive force	618
	The rules for defining and using standard	
	half-cell emfs	619
	Why half-cell emfs are useful	621
	The propensity of an oxidation-reduction reaction	623
	Why the rule giving the cell from the half-cell	
	emfs works	624

	The use of electromotive-force measurements to determine	
		626
	Using emf measurements to determine activity	
		626
	The activity coefficient $\gamma(\pm;HCl)$ from the electromotive	
	force of the cell $Pt(I)$, $H_2(1 atm) HCl(m) AgCl(s)$	
		627
	The use of the activity coefficients of electrolytes to calculate	
	how the emf of a cell changes with the molality of the	
		630
	The connection between the equilibrium composition of	000
	a reaction performed in a cell and that of the same	
		632
	A review of the results needed	633
	The gas-liquid equilibrium also matters	634
		635
		000
	Using measurements on the open-circuit cell to calculate	620
	the gas composition in the short-circuited cell	638
	The composition and the partial pressures	639
Anno	ndicas	
Appe	ndices	
	A1. Conversion factors for pressure units	645
	A2. Ethane data	645
	A3. Gas constant R in units of energy/mol K	650
	A4. van der Waals constants	650
	A5. Value of the constants appearing in the	
	Beattie-Bridgeman equation	651
	A6. The value of the constants appearing in the	
	Benedict-Webb-Rubin equation	652
	A7. Units for work, energy, and heat	655
	A8. The dependence of heat capacity on temperature	655
	A9. Thermodynamic properties at several temperatures	
	and 1 bar	658
	Further Reading	671
	Index	675