Contents

1.	. PLANCK'S RADIATION LAW AND THE EINSTEIN COEFFICIENTS	1
	Maxwell's equations	1
	Density of field modes in a cavity	4
	Quantization of the field energy	6
	Planck's law	9
	Einstein's A and B coefficients	12
	The case of thermal equilibrium	14
	Fluctuations in photon number	16
	Restriction to high frequencies	19
2.	. THEORY OF SIMPLE OPTICAL PROCESSES	22
	Macroscopic theory of absorption	22
	Properties of the microscopic processes	24
	Optical excitation of atoms	27
	Microscopic theory of absorption	29
	Population inversion: the laser	33
	Radiation pressure	37
3.	. QUANTUM THEORY OF THE EINSTEIN B COEFFICI	ENT 39
	Time-dependent quantum mechanics	39
	Form of the interaction Hamiltonian	42
	The transition rate	44
	Expression for the B coefficient	51
	The Dirac delta-function	53
4.	THE FREQUENCY-DEPENDENT SUSCEPTIBILITY	56
	Definition of the susceptibility	56
	Classical theory of the susceptibility	58
		20

Contents

X

V

The flow of energy	61
Kramers-Kronig relations	64
Sum rules	68
Quantum theory of the susceptibility	70
Inclusion of damping in the quantum theory	73
Oscillator strengths	77

5. 7	THEORY	OF	CHAOTIC	LIGHT	AND	COHERENCE	81
			. Walking and				00

Doppler broadening	82
Collision broadening	84
Composite emission lineshape	88
Time dependence of a chaotic light beam	90
Intensity fluctuations of chaotic light	95
Young's interference fringes	100
Evaluation of the first-order correlation function	102
Fringe intensity and first-order coherence	107
Intensity interference and higher-order coherence	111

6.	QUANTIZATION OF THE RADIATION FIELD	120
	Potential theory for the classical electromagnetic field	121
	The Coulomb gauge	123
	The free classical field	126
	The quantum-mechanical harmonic oscillator	128
	Quantization of the field	133
	The zero-point energy	137

7.	STATES OF THE QUANTIZED RADIATION FIELD	139
	The photon phase operator	140
	States of well-defined photon phase	143
	Physical properties of the single-mode number states	145
	Physical properties of the single-mode phase states	146
	The coherent photon states	148
	Physical properties of the single-mode coherent states	150
	The density operator	154
	Density operators for pure states	157
	Statistical mixture states of the radiation field	159

8.	INTERACTION OF THE RADIATION FIELD WITH AN	
	ATOM	164
	Classical Hamiltonian for coupled fields and charges	164
	Multipole expansion of the Hamiltonian	168
	The electric-dipole approximation	171
	Second quantization of the atomic Hamiltonian	174
	Calculation of photon absorption and emission rates	177
	Transformation to the Schrödinger representation	181
	Diagonalization of the atom-radiation Hamiltonian	184
	Radiative linewidth and frequency shift	191
	Frequency-dependent susceptibility for multilevel atoms	195

9	P. PHOTON OPTICS	199
	The photoelectric effect	199
	Measurement of the photon intensity	203
	Photon coherence properties	207
	Higher-order photon coherence	210
	Photon counting	214
	Photon distributions for coherent and chaotic light	217
	Quantum-mechanical photon-count distribution	221
	Photon experiments	225

232
232
236
241
244
248
251
258
261
264

11. THE SCATTERING OF LIGHT BY ATOMS	267
The scattering cross-section	267
Classical theory of elastic scattering	271

xii Contents

	General expression for radiative transition rates	275
	Time-dependent perturbation theory	278
	The Kramers–Heisenberg formula	281
	Elastic scattering	285
	Inelastic scattering: the Raman effect	290
2.	NON-LINEAR OPTICS	297
	Two-photon absorption (two beams)	298
	Two-photon absorption (single beam)	304
	The non-linear susceptibility	307
	The stimulated Raman effect	312
	Third-harmonic generation	318
	Photon statistical properties and non-linear optics	323

INDEX

331