CONTENTS

DA	RT I	BACKGROUND	1
FA	ILL I	BACKGROOND	15
1	Intro	duction	3
88	1.1	Some Examples	3
	1.2	Scope and Limitations	11
	1.3	Background Reading	14
	1.0	Dackground Reading	17
2	Some	Key Ideas	17
-	2.1	Scaled Variables	17
	2.2	Design Regions	19
	2.3	Random Error	21
	2.4	Unbiasedness, Validity, and Efficiency	23
	2.1	Chistascuress, variately, and Empletely	20
3	Expe	rimental Strategies	25
POI	3.1	Objectives of the Experiment	25
	3.2	Stages in Experimental Research	28
	3.3	The Optimization of Yield	31
	3.4	Further Reading	33
		Computation Depute	00
4	The (Choice of a Model	34
	4.1	Linear Models for One Factor	34
	4.2	Non-linear Models	38
	4.3	Interaction	39
	4.4	Response Surface Models	42
		Equivalence Theorem	
5	Mode	els and Least Squares	45
	5.1	Simple Regression	45
	5.2	Matrices and Experimental Design	48
	5.3	Least Squares	52
	5.4	Further Reading	57
		A. D., and E-optimality,	
6	Crite	ria for a Good Experiment	58
	6.1	Aims of a Good Experiment	58
	6.2	Confidence Regions and the Variance of Prediction	59
	6.3	Contour Plots of Variances for Two-Factor Designs	65

CO	NTENTS
00	TATTINTO

	6.4	Variance–Dispersion Graphs	67
	6.5	Some Criteria for Optimum Experimental Designs	69
7	Stand	dard Designs	72
the	7.1	Introduction	72
	7.2	2^m Factorial Designs	72
	7.3	Blocking 2^m Factorial Designs	75
	7.4	2^{m-f} Fractional Factorial Designs	76
	7.5	Plackett—Burman Designs	79
	7.6	Composite Designs	80
	7.7	Standard Designs in SAS	83
	7.8	Further Reading	87
8	The .	Analysis of Experiments	88
	8.1	Introduction	88
	8.2	Example 1.1 Revisited: The Desorption of	
		Carbon Monoxide	89
	8.3	Example 1.2 Revisited: The Viscosity of	
		Elastomer Blends	94
	8.4	Selecting Effects in Saturated Fractional	
		Factorial Designs	99
	8.5	Robust Design	104
	8.6	Analysing Data with SAS	111
PA	RT II	THEORY AND APPLICATIONS	117
9	Optin	mum Design Theory	119
	9.1	Continuous and Exact Designs	119
	9.2	The General Equivalence Theorem	122
	9.3	Exact Designs and the General Equivalence Theorem	125
	9.4	Algorithms for Continuous Designs and the General	
		Equivalence Theorem	127
	9.5	Function Optimization and Continuous Design	128
	9.6	Finding Continuous Optimum Designs Using	
		SAS/IML Software	131
	Crite	eria of Optimality	135
	10.1	A-, D-, and E-optimality	135
	10.2	D _A -optimality (Generalized D-optimality)	137
	10.3	D _S -optimality	138
	10.4	c-optimality	142
	10.5	Linear Optimality: C- and L-optimality	142

xii

2	0	M	m	D	NT	T	CI
	U	IN	T	L	IN	T	D

	10.6	V-optimality: Average Variance	143
	10.7	G-optimality	143
	10.8	Compound Design Criteria	144
	10.9	Compound D_A -optimality	145
	10.10	D-optimum Designs for Multivariate Responses	145
	10.11	Further Reading and Other Criteria	147
11	D-opt	imum Designs	151
	11.1	Properties of D-optimum Designs	151
	11.2	The Sequential Construction of Optimum Designs	153
	11.3	An Example of Design Efficiency: The Desorption of	
		Carbon Monoxide. Example 1.1 Continued	160
	11.4	Polynomial Regression in One Variable	161
	11.5	Second-order Models in Several Variables	163
	11.6	Further Reading	167
12	Algor	ithms for the Construction of Exact	
	D-opt	imum Designs	169
	12.1	Introduction	169
	12.2	The Exact Design Problem	170
	12.3	Basic Formulae for Exchange Algorithms	172
	12.4	Sequential Algorithms	175
	12.5	Non-sequential Algorithms	176
	12.6	The KL and BLKL Exchange Algorithms	177
	12.7	Example 12.2: Performance of an Internal	
		Combustion Engine	179
	12.8	Other Algorithms and Further Reading	181
13	Optin	num Experimental Design with SAS	184
	13.1	Introduction	184
	13.2	Finding Exact Optimum Designs Using the	
		OPTEX Procedure	184
	13.3	Efficiencies and Coding in OPTEX	187
	13.4	Finding Optimum Designs Over Continuous Regions	
		Using SAS/IML Software	189
	13.5	Finding Exact Optimum Designs Using	
			191
14	Exper	iments with Both Qualitative and Quantitative	
	Factor		193
	14.1	Introduction sources sources and below a	193
	14.2	Continuous Designs	195

xiii

CONTENTS	CO	N	T	E	N	T	S	
----------	----	---	---	---	---	---	---	--

	14.3	Exact Designs	197
	14.4	Designs with Qualitative Factors in SAS	201
	14.5	Further Reading	204
		10.9 Compound D 4-optimality and sugland brast	
15		ing Response Surface Designs	205
	15.1	Introduction	205
	15.2	Models and Design Optimality	205
	15.3	Orthogonal Blocking	210
	15.4	Related Problems and Literature	213
	15.5	Optimum Block Designs in SAS	215
16	Mixtu	ire Experiments	221
	16.1	Introduction	221
	16.2	Models and Designs for Mixture Experiments	222
	16.3	Constrained Mixture Experiments	225
	16.4	Mixture Experiments with Other Factors	231
	16.5	Blocking Mixture Experiments	237
	16.6	The Amount of a Mixture	240
	16.7	Optimum Mixture Designs in SAS	243
	16.8	Further Reading	247
17	Non-l	inear Models	248
	17.1	Some Examples	248
	17.2	Parameter Sensitivities and D-optimum Designs	251
	17.3	Strategies for Local Optimality	257
	17.4	Sampling Windows	259
	17.5	Locally c-optimum Designs	261
	17.6	The Analysis of Non-linear Experiments	266
	17.7	A Sequential Experimental Design	
	17.8	· · · · · · · · · · · · · · · · · · ·	270
	17.9	Multivariate Designs	275
		Optimum Designs for Non-linear Models in SAS	277
	17.11	Further Reading	286
18	Bayes	sian Optimum Designs	289
	18.1	Introduction	289
	18.2	A General Equivalence Theorem Incorporating	
		Prior Information	292
	18.3	Bayesian D-optimum Designs	294
	18.4	Bayesian c-optimum Designs	302
	18.5	Sampled Parameter Values	304
	18.6	Discussion	310

xiv

2	0	M	T	TT 7	T	T	CI
U	U	IN	Т	EI	N	T	D

19		n Augmentation	312
	19.1	Failure of an Experiment	312
	19.2	Design Augmentation and Equivalence Theory	
	19.3	Examples of Design Augmentation	
	19.4	Exact Optimum Design Augmentation	326
	19.5	Design Augmentation in SAS	326
	19.6	Further Reading	328
20	Mode	l Checking and Designs for Discriminating	
	Betwe	een Models	329
	20.1	Introduction	329
	20.2	Parsimonious Model Checking	329
	20.3	Examples of Designs for Model Checking	333
	20.4	Example 20.3. A Non-linear Model for Crop Yield	
		and Plant Density	338
	20.5	Exact Model Checking Designs in SAS	344
	20.6	Discriminating Between Two Models	
	20.7	Sequential Designs for Discriminating Between	
		Two Models	353
	20.8	Developments of T-optimality	356
	20.9	Nested Linear Models and D _s -optimum Designs	359
	20.10	Exact T-optimum Designs in SAS	363
	20.11	The Analysis of T-optimum Designs	
	20.12	Further Reading	366
		25.4 Adaptive Designs for Clinical Trials	
21	-	ound Design Criteria	
		Introduction	367
		Design Efficiencies	368
		Compound Design Criteria	
		Polynomials in One Factor	370
	21.5	Model Building and Parameter Estimation	372
	21.6	Non-linear Models	378
	21.7	Discrimination Between Models	381
	21.8	DT-Optimum Designs	385
	21.9	CD-Optimum Designs	389
	21.10		391
	21.11	Further Reading	393
22	Gener	alized Linear Models	395
	22.1	Introduction	395
	22.2	Weighted Least Squares	396
	22.3	Generalized Linear Models	397

xv

CONTENTS

	22.4	Models and Designs for Binomial Data	398
	22.5	Optimum Design for Gamma Models	410
	22.6	Designs for Generalized Linear Models in SAS	414
	22.7	Further Reading	416
23	Resp	onse Transformation and Structured Variances	418
328	23.1	Introduction	418
	23.2	Transformation of the Response	419
	23.3	Design for a Response Transformation	421
	23.4	Response Transformations in Non-linear models	
	23.5	Robust and Compound Designs	431
	23.6	Structured Mean–Variance Relationships	433
		3 Examples of Designs for Model Checking main and other	
24	Time	-dependent Models with Correlated Observations	439
	24.1	Introduction	439
	24.2	The Statistical Model	440
	24.3	Numerical Example	441
	24.4	Multiple Independent Series	442
	24.5	Discussion and Further Reading	447
25	Furth	ner Topics	451
	25.1	Introduction	451
	25.2	Crossover Designs	452
	25.3	Biased-coin Designs for Clinical Trials	455
	25.4	Adaptive Designs for Clinical Trials	460
	25.5	Population Designs	464
	25.6	Designs Over Time	469
	25.7	Neural Networks	470
	25.8	In Brief	471
26	Exer	cises	473
Bib	oliogra	aphy deading alabold neeweel doltanin mail	479
	Ū		
Au	thor 1		503
Sub	ject i		507

xvi