EFIRSCorrespondence Between Dynamic and Microelectros

Contents

1

Symbols and Abbreviations	xiii
Foreword	xvii
Preface	xix
Acknowledgments	xxiii

Basic Properties of Organic Molecular Crystals.....

1

Part 1A Characteristic Features of Organic Molecular Crystals

1A.1.	Introduction	1
1A.2.	Role of the Properties of Molecules. Molecular Arrangement	7
1A.3.	Crystal Structure of Some Model Compounds	10
	1A.3.1. Linear Polyacenes. A-type Lattice, 10	
	1A.3.2. Pyrene and Perylene. B-type Lattice, 13	
	1A.3.3. Phthalocyanines, 15	
1A.4.	Some Dynamic Properties of Organic Molecules and Crystals	20
	1A.4.1. Intramolecular Vibrations, 20	
	1A.4.2. Lattice Vibrations, 22	
1A.5.	Molecular Interaction Forces in OMC. Molecular and	
	Solid-State Approaches	25
	3.2.3. Applicability of a Single-Electron Band Michael ***	

viii / CONTENTS

		Part 1B	
		Hamiltonian Description of Interaction	
		Phenomena in Organic Molecular Crystals	
	1B.1	. Hamiltonian of an Isolated Molecule; Rigid (Crude) and	
		Dynamic (Adiabatic) Representations	30
	1 B .2	2. Hamiltonian of a Molecular Crystal; Molecular Excitons	33
	1 B .3	B. Electrons and Holes in Molecular Crystals	45
	1 B .4	Electron–Exciton Coupling; Electronic Polaron Around the	10
	10.0	Electron	48
		6. Hole–Exciton Coupling: Electronic Polaron Around the Hole	50
		6. Combined Exciton–Electron-Hole Interaction	51
		7. Coupling of Excitons, Electrons, and Holes to Phonons	51
	1B.8	8. Lattice Polaron Around Electrons, Holes, and Excitons	54
2	Exc	tion Interaction with Local Lattice Environment	60
	2.1.	Excitons in Anthracene-Type Crystals	60
	2.2.	Excitonic Polaron: Adiabatic Versus Crude Representation.	
		Exciton Self-Trapping	66
		2.2.1. Traditional Treatment in Terms of Adiabatic	
		Approximation, 66	
		2.2.2. Exciton Self-trapping in the Crude Representation, 74	
	2.3.	Absorption and Scattering of Light by the Exciton-Phonon	
		System	76
	2.4.	The Urbach-Martienssen Rule	77
3	Ch	arge Carrier Interaction with Local Lattice	
		/ironment	83
	3.1.	Conditions of Charge Carrier Localization and Delocalization	84
		Band Model of Single-Electron Approximation	86
		3.2.1. General Scheme of the Model. Bloch Function, 86	
		3.2.2. Results of Calculations of the Band Structure of Ac-Type	
		Crystals, 89	
		3.2.3. Applicability of a Single-Electron Band Model Approximation, 90	
	3.3.	Electronic Polarization in OMC. Phenomenological	
		Representation	96
	3.4.	Dynamic Approaches to Electronic Polarization in OMC	101

		3.4.1. Correspondence Between Dynamic and Microelectrostatic Approaches, 101	
		3.4.2. Quantum Corrections to the Polarization Energies, 105	
	3.5.	Microelectrostatic Methods of Electronic Polarization Energy	
		Calculations in OMC	106
		3.5.1. Direct Non-self-consistent Methods, 106	
		3.5.2. Method of Self-consistent Polarization Field (SCPF), 109	
		3.5.3. Method of Fourier Transformation, 111	
		3.5.4. Fourier Transformation Method and Submolecular Approach, 114	
		3.5.5. Charge Carrier Interaction with Permanent Quadrupole Moments of Surrounding Molecules, 116	
		3.5.6. Evaluation of Total Effective Polarization Energy Using Calculated and Experimental Energy Parameters, 119	
		3.5.7. Possible Improvements and Corrections, 124	
	3.6.	Charge Carrier Interaction with Intra- and Intermolecular Vibrations. Molecular and Lattice Polarons	125
		3.6.1. Molecular (Vibronic) and Lattice Polarization Phenomena — a Phenomenological Approach, 125	
		3.6.2. Hamiltonian Description of the Formation of Molecular and Lattice Polarons Around Charge Carriers, 133	
4	Ene	ergy Structure of Polaron States in OMC	142
	4.1.	Adiabatic Energy Gap	143
	4.2.	Optical Energy Gap	152
	4.3.	The Energy Structure of Polaron States in OMC	159
	4.4.	Bounded Electronic and Molecular Polarons. Charge Transfer	
		(CT) and Charge Pair (CP) States	169
	4.5.	Energy Structure of Polaron States in an Ideal (Perfect) Crystal. A Synopsis	180
	4.6.	Energy Structure of Local States in Real (Imperfect) OMC	181
		4.6.1. Local States of Structural Origin, 181	
		4.6.2. Local States of Chemical Impurity Origin, 190	
		4.6.3. Experimental Methods of Local State Studies, 193	
	4.7.	Energy Structure of Electronic States in Langmuir-Blodgett (LB)	
		Multilayers	194

x / CONTENTS

	4.8.	Conclusions on Electronic States in Real (Defective) Organic Crystals	198
			170
5	Exc	citon and Charge Carrier Transport Phenomena	199
	5.1.	Some Characteristic Features of Transport Phenomena in Organic	
		Crystals	199
	5.2.	Coherent and Diffusive Motion of Excitons and Charge Carriers	201
	5.3.	Stochastic Liouville Equation Model	205
	5.4.	Generalized Master Equations and Generalized Stochastic Liouville Equation Model	212
	5.5.	Applicability of the Stochastic Liouville Equation and Generalized Stochastic Liouville Equation Models	219
	5.6.	Generalized Master Equation Theories with Diagonalizing Projector	221
	5.7.	Relation Between the Kenkre-Knox and the	
		Förster–Dexter Theories	229
	5.8.	Relation to the Continuous-Time-Random-Walk (CTRW) Method	231
	5.9.	Diffusivity of Excitons and Charge Carriers in Molecular Crystals in Terms of GME	233
	5.10	. GME and Partitioning Projectors; Trapping, Sinks, and Finite-Lifetime Effects	237
	5.11	. Coherence and Quantum Yield of Exciton Transfer	240
	5.12	. Methods of Solution of Time-Convolution GME	241
	5.13	. Grover and Silbey and Munn and Silbey Theories	242
	5.14	. Some Other Methods and Topics	248
	5.15	. Hot Unthermalized Charge Carriers and the Fokker-Planck	
		Equation	249
	5.16	. Phenomenological Approaches	251
6	Ch	arge Carrier Photogeneration and Separation	
0		chanisms in OMC	254
	6.1.	Basic Photogeneration Mechanisms at the Near-threshold Spectral	
		Region	255
	6.2.	Experimental Investigation of Photogeneration Processes in Some Model OMC	261
		6.2.1. Description of Experimental Methods, 261	
		6.2.2. Determination of the Mean Thermalization Length r_{th} in Polyacene Crystals, 263	

1

		6.2.3.	Approximation of Photoconductivity Quantum Efficiency $\eta(h\nu)$ Curves, 266	
		6.2.4.	The CP State Population Pathways. Competitive and Complementary Channels, 270	
		6.2.5.	Some General Characteristics of the Autoionization Mechanism, 275	
		6.2.6.	Temperature Dependence of the Mean Thermalization Length r_{thv} 287	
		6.2.7.	Electric Field Dependence of the Mean Thermalization Length r_{th} 288	
		6.2.8.	The Fast Photocurrent Pulse, 291	
		6.2.9.	Brief Survey of Electric Field-Dependent Electronic Processes in OMC, 292	
	6.3.	Comp	outer Simulation of the Photogenerated Charge Carrier	
		Separa	ation Processes in OMC	294
		6.3.1.	Description of the Model, 295	
		6.3.2.	Parameterization of the Model, 297	•
		6.3.3.	Simulation Results. Comparison with Experiment, 300	
		6.3.4.	Discussion of the Simulation Results, 312	
7	Cha	arge	Carrier Transport Processes in OMC	318
	7.1.	Exper	imental Determination of Charge Carrier Transport	
		Chara	cteristics and Parameters	318
		7.1.1.	Some General Problems and Specific Features, 318	
		7.1.2.	Methodology of Experimental Measurements, 322	
		7.1.3.	Experimental Charge Carrier Transport Characteristics. Field-Generated Hot Carriers, 326	
	7.2.	Comp	outer Simulation of Charge Carrier Transport Characteristics	340
		7.2.1.	Some General Considerations, 340	
		7.2.2.	Simulation Procedure and Model Considerations, 342	
		7.2.3.	Simulation Results and Their Interpretation, 345	
	7.3.		l Description of Charge Carrier Transport Phenomena in . Advantages and Limitations	368
	7.4.		ct of Local Trapping States in Real OMC on the Charge	
		-	er Transport Characteristics	372
	7.5.	Possil	ble Charge Carrier Transport Mechanisms in LB Multilayers	374

8 Epilogue: Sumn	ning Up and Looking Ahead	378
References		384
Cubicct Index	arge Carriss Thansal Schulmensleen hr	394
Subject muex		
. Self Rectances St. St.		
	arga Carrier Transport Processes in OM	
8 1 1 Course (120		· 24
	12.2. Simulatile Redail and Party Inderpresented	