CONTENTS

1	Stress – strain – strain energy	9
1.1	Stress	9
1.2	Plane stress, Mohr's circle	10
1.3	Triaxial state of stress	16
1.4	Strain	17
1.5	Work of loading forces and strain energy	20
2	Finite element method, analytical and numerical methods	23
2.1	Finite element method	23
2.2	Use of numerical and analytical methods for problems in mechanics	26
3	Failure hypotheses and criteria	31
3.1	Brittle fracture	31
3.2	Onset of plastic deformations	32
4	Basics of plasticity	35
4.1	Material properties	36
4.2	System of rods loaded by tension	39
4.3	Deformations in elastic-plastic state	41
4.4	Situation after unloading	42
4.5	Elastic-plastic bending	44
4.6	Elastic-plastic condition of thick-walled cylindrical pressure vessel	48
4.7	Criterion of plastic flow under multiaxial stress state	51
4.8	Increasing of fatigue resistance of metallic components	52
5	Thermal stresses	54
5.1	Principal equations	54
5.2	Procedures for strength increasing by thermal treatment	58
6	Stress concentration	64
6.1	Introduction	64
6.2	Stresses around holes	67
6.3	Stress state at concentrated contact	70
7	Response under alternating load; fatigue	74
7.1	Change of mechanical properties	74
7.2	Initiation and growth of fatigue cracks	75
7.3	Time to fatigue failure	76

7.4	Factors influencing the fatigue endurance	78
7.5	Damage accumulation	79
8 Pr	nciples of fracture mechanics	81
8.1	Situation in bodies with cracks, principles of fracture mechanics	81
8.2	Growth of fatigue cracks	88
8.3	Increasing the resistance to crack propagation	90
9 Fr	acture analysis	93
10 N	lechanics of viscoelastic materials	98
10.1	Ideally elastic material	98
10.2	Ideally viscous material	99
10.3	Maxwell model	100
10.4	Kelvin-Voigt model	103
10.5	Standard linear solid	105
10.6	Burgers model	106
10.7	Determination of deformations under varying load	108
10.8	Response of viscoelastic materials to alternating load	109
11 Me	chanics of components with treated surface	112
10.1	Introduction	112
10.2	Stresses due to the difference of thermal expansions	113
10.3	Stresses caused by membrane forces	116
10.4	Stresses in coatings on curved surfaces	118
10.5	Situation at coating edges	119
10.6	Elastic-plastic deforming	120
10.7	Fracture mechanics of interfaces	124
10.8	Determination of mechanical properties of coatings	132
12 Me	chanics of composite materials	136
12.1	Introduction	136
12.2	Composites with long fibres	137
12.3	Composites with short fibres	143
12.4	Dispersion of fiber properties	146
12.5	Failure of composites	147
12.6	Elastic response of orthotropic materials	149
12.7	Multilayer composites (laminates)	150

13	Mechanics of elastomers and very compliant bodies	153	
13.1		153	
13.2		155	
13.3		157	
13.4	Membrane structures	158	
14	Optimisation of shape and dimensions of constructions	161	
14.1		161	
14.2		167	
14.3		168	
14.4		172	
15	15 Dimensional analysis and theory of similarity		
14.1		182	
14.2		184	
14.3	3 Further recommendations	185	
14.4	4 Limitations of similarity principle	187	
14.	5 Examples of non-dimensional quantities	191	
Ind		192	