10111103

33

Contents

Pref		xvii	2.4
	nowledgments	xix	
Auth		xxi	
Auti	Subversion of the collular encode		2.5
	is official for programming		
1	THE FUNDAMENTALS OF		
	MOLECULAR AND CELLULAR		
	VIROLOGY	1	2.6
	Molecular and cellular virology focuses		
1.1	on the molecular interactions that occur		2.7
	when a virus infects a host cell	2	
1.2	The discipline of virology can be traced	97	2.8
1.2	historically to agricultural and medical		
	science	3	2.9
1.3	Basic research in virology is critical for		2.10
1.5	molecular biology, both historically and		
	today	6	
1.4	Viruses, whether understood as living		1
	or not, are the most abundant evolving		Esser
	entities known	8	Ques
1.5	Viruses can be defined unambiguously		Furth
	by four traits	8	
1.6	Virions are infectious particles		~
	minimally made up of nucleic acids and	08	3
	proteins	10	
1.7	Viruses can be classified according to	1	3.1
1.8	the ways they synthesize and use mRNA	11	
1.0	Viruses are propagated in the	12	3.2
1.9	laboratory by mixing them with host cells	12	
1.5	Viral sequences are ubiquitous in animal genomes, including the human genome	14	
Esser	ntial concepts		1-54
	tions	17	3.3
	mRNA ave typically polycast soll	17	
ruru	ner reading	18	3.4
-			3.5
2	THE VIRUS REPLICATION CYCLE	19	
2.1	Viruses reproduce through a lytic virus		3.6
-	replication cycle	20	5.1
2.2	Molecular events during each stage		3.7
22	of the virus replication cycle	22	
2.3	The influenza virus is a model for		3.8
	replication of an animal virus	23	

2.4	The host surface is especially important for attachment, penetration, and uncoating	23
2.5	Viral gene expression and genome replication take advantage of host transcription, translation, and replication features	26
2.6	The host cytoskeleton and membranes are typically crucial during virus assembly	27
2.7	Host-cell surfaces influence the mechanism of virus release	27
2.8	Viruses can also cause long-term infections	27
2.9	Herpesvirus is a model for latent infections	29
2.10	Research in molecular and cellular virology often focuses on the molecular details of each stage	
	of the replication cycle	29
Essen	tial concepts	30
Quest	tions	30
Furth	er reading	31

3 ATTACHMENT, PENETRATION, AND UNCOATING

3.1	Viruses enter the human body through one of six routes	33
3.2	The likelihood of becoming HIV+ depends on the route of transmission and the amount of virus in the infected tissue	34
3.3	Viruses are selective in their host range and tissue tropism	35
3.4	The virion is a genome delivery device	36
3.5	The genomic contents of a virion are irrelevant for attachment, penetration, and uncoating	37
3.6	Animal viruses attach to specific cells and can spread to multiple tissues	40
3.7	Noncovalent intermolecular forces are responsible for attaching to host cells	41
3.8	Most animal virus receptors are alvcoproteins	42

20

5.9	through genetic, biochemical, and	
	immunological approaches	43
3.10	Animal virus receptors can be identified	
	through molecular cloning	43
3.11	Animal virus receptors can be identified through affinity chromatography	44
3.12	Antibodies can be used to identify animal virus receptors	45
3.13	Rhinovirus serves as a model for attachment by animal viruses lacking spikes	47
3.14	Several independent lines of evidence indicate that ICAM-1 is the rhinovirus receptor	50
3.15	Experiments using molecular genetics support the conclusion that ICAM-1 is	50
3.16	the rhinovirus receptor Structural biology experiments support	50
5.10	the conclusion that ICAM-1 is the	F1
2 47	rhinovirus receptor	51
3.17	Bioinformatics comparisons support the conclusion that ICAM-1 is the rhinovirus	F.1
2.40	receptor	51
3.18	Influenza serves as a model for attachment by enveloped viruses	52
3.19	The influenza HA spike protein binds to sialic acids	53
3.20	The second stage of the virus replication cycle includes both penetration and uncoating and, if necessary, transport	
2.24	to the nucleus	55
3.21	Viruses subvert the two major eukaryotic mechanisms for internalizing particles	56
3.22	Many viruses subvert receptor-mediated	20
3.44	endocytosis for penetration	56
3.23	Herpesvirus penetrates the cell through phagocytosis	57
3.24	Common methods for determining the	
	mode of viral penetration include use of drugs and RNA interference	58
3.25	The virion is a metastable particle	
	primed for uncoating once irreversible attachment and penetration have occurred	59
3.26	Picornaviruses are naked viruses that release their genomic contents through pore formation	60
3.27	Some enveloped viruses use membrane fusion with the outside surface of the	
	cell for penetration	60

Animal virus recentors can be identified

3.28	Vesicle fusion in neuroscience is a model for viral membrane fusion	61
3.29		63
3.30	Influenza provides a model for viral envelope fusion triggered by acidification of an endocytic vesicle	64
3.31	The destination for the virus genome	
5151	may be the cytoplasm or the nucleus	65
3.32	Subversion of the cellular cytoskeleton is critical for uncoating	65
3.33	Viruses that enter an intact nucleus must manipulate gated nuclear pores	66
3.34	Viruses introduce their genomes into the nucleus in a variety of ways	67
3.35	Adenovirus provides a model for uncoating that delivers the viral genome into the nucleus	68
3.36	The unusual uncoating stages of reoviruses and poxviruses leave the virions partially intact in the cytoplasm	69
3.37	BASIC (CSEARCD IN WOLDOW IS CODCAL FOR	71
3.38	Plant viruses are often transmitted by biting arthropod vectors	72
Esser	ntial concepts	73
Ques	Viruses can be defined unambiguou anti	74
Furth	ner reading	74

GENE EXPRESSION AND 4 **GENOME REPLICATION IN** MODEL BACTERIOPHAGES 77 4.1 Bacterial host cell transcription is catalyzed by a multisubunit machine that catalyzes initiation, elongation, and termination 78 Bacterial host cell and bacteriophage 4.2 80 mRNA are typically polycistronic Transcription and translation in 4.3 bacterial host cells and bacteriophages are nearly simultaneous because of the proximity of ribosomes and chromosomes 81 4.4 Bacterial translation initiation, elongation, and termination are controlled by translation factors 81 4.5 Bacteriophages, like all viruses, encode

structural and nonstructural proteins

CONTENTS IX

4.6	The T7 bacteriophage has naked, complex virions and a large double-	84	4.
4.7	stranded DNA genome Bacteriophage T7 encodes 55 proteins in genes that are physically grouped	45.2	4.
	together by function	85	
4.8	Bacteriophage T7 proteins are expressed in three major waves	85	4.
4.9	The functions of bacteriophage proteins often correlate with the timing of their	86	4.
4.10	expression Bacteriophage T7 gene expression is highly regulated at the level of	00	
	transcription initiation	87	4.
4.11	Bacterial host chromosome replication is regulated by the DnaA protein and		4.
	occurs via a θ intermediate	88	
4.12	Many bacterial proteins are needed to catalyze chromosome replication	90	4.
4.13	Although many bacteriophages have linear dsDNA genomes, bacterial hosts		4.
2.48	cannot replicate the ends of linear DNA	92	
4.14	T7 bacteriophage genome replication is catalyzed by one of the simplest known replication machines	93	4.
4.15	The λ bacteriophage has naked,	95	
4.15	complex virions and a large double- stranded DNA genome	96	4.3
4.16	Bacteriophage λ can cause lytic or long- term infections	96	4.3
4.17	There are three waves of gene	00	1
4.18	expression during lytic λ replication The λ control region is responsible for	98	4.3
	early gene expression because of its promoters and the Cro and N proteins		4.3
4.19	it encodes The λ N antitermination protein controls	99	Ess
	the onset of delayed-early gene expression	99	Qu
4.20	The λ Q antitermination protein and Cro repressor protein control the switch		Fu
	to late gene expression	100	
4.21	Bacteriophages T7 and λ both have three waves of gene expression but the		5
	molecular mechanisms controlling them differ	100	
4.22	Bacteriophage λ genome replication	189	
	occurs in two stages, through two different intermediates	101	5.1
4.23	Lambda genome replication requires	101	
	phage proteins O and P and many	-	5.2
	subverted host proteins	102	

4.24	The abundance of host DnaA protein relative to the amount of phage DNA controls the switch to rolling-circle	
	replication	102
4.25	There are billions of other	
	bacteriophages that regulate gene	
OEI A DC	expression in various ways	103
4.26	Some bacteriophages have ssDNA, dsDNA, or (+) ssRNA genomes	104
4.27	The replication cycles of ssDNA	
	bacteriophages always include formation of a double-stranded	
	replicative form	104
4.28	Bacteriophage ϕ_{χ} 174 is of historical	
1.20	importance	105
4.29	Bacteriophage $\phi \chi 174$ has extremely	
	overlapping protein-coding sequences	105
4.30	Bacteriophage $\phi \chi$ 174 proteins are expressed in different amounts	106
4.31	A combination of mRNA levels and differential translation accounts for levels of bacteriophage $\phi \chi$ 174 protein	
	expression	107
4.32	Bacteriophage M13 genome replication is catalyzed by host proteins and occurs via a replicative form	109
4.33		108
4.33	Bacteriophage MS2 is a (+) ssRNA virus that encodes four proteins	110
4.34	Bacteriophage MS2 protein abundance is controlled by secondary structure	
	in the genome	111
4.35	Bacteriophage RdRp enzymes subvert abundant host proteins to create an	
	efficient replicase complex	114
4.36	Bacteriophage proteins are common laboratory tools	115
Essen	tial concents	121
	tions	122
	er reading	123
	1 honorishin birnarkaning no songque	5.19
5	GENE EXPRESSION AND	

148	GENE EXPRESSION AND GENOME REPLICATION IN THE POSITIVE-STRAND RNA VIRUSES	125
5.1	Class IV virus replication cycles have common gene expression and genome replication strategies	126
5.2	Terminal features of eukaryotic mRNA are essential for translation	127

X CONTENTS

5.3	viruses express multiple proteins from	
	a single genome	128
5.4	Picornaviruses are models for the simplest (+) strand RNA viruses	128
5.5	Class IV viruses such as poliovirus encode one or more polyproteins	130
5.6	Class IV viruses such as poliovirus use proteolysis to release small proteins	122
	from viral polyproteins	132
5.7	Translation of Class IV virus genomes occurs despite the lack of a 5' cap	134
5.8	Class IV virus genome replication	
	occurs inside a virus replication compartment	136
5.9	The picornavirus 3D ^{pol} is an RdRp and synthesizes a protein-based primer	137
5.10	Structural features of the viral genome are essential for replication of Class IV	
	viral genomes	137
5.11	Picornavirus genome replication occurs in four phases	138
5.12	Flaviviruses are models for simple enveloped (+) strand RNA viruses	141
5.13	The linear (+) strand RNA flavivirus genomes have unusual termini	141
5.14	Enveloped HCV encodes 10 proteins including several with transmembrane segments	142
5.15	Togaviruses are small enveloped viruses with replication cycles more complex	
	than those of the flaviviruses	143
5.16	Four different togavirus polyproteins are found inside infected cells	145
5.17	Different molecular events predominate early and late during togavirus infection	146
5.18	Translation of togavirus sgRNA requires use of the downstream	
	hairpin loop	147
5.19	Suppression of translation termination is necessary for production of the nonstructural p1234 Sindbis virus	
	polyprotein	148
5.20	Sindbis virus uses an unusual	1.40
	mechanism to encode the TF protein	149
5.21	A programmed –1 ribosome frameshift is needed to produce the togavirus TF protein	150
5.22	The picornaviruses, flaviviruses, and	150
	togaviruses illustrate many common	2.4
	properties among (+) strand RNA viruses	151

5.23	Coronaviruses have long (+) strand RNA genomes and novel mechanisms	
	of gene expression and genome replication	152
5.24	Coronaviruses have enveloped spherical virions and encode conserved and	
	species-specific accessory proteins	152
5.25	Coronaviruses express a nested set of sgRNAs with leader and TRS sequences	153
5.26	Coronaviruses use a discontinuous mechanism for synthesis of replicative	455
	forms and a second seco	155
5.27	Most coronavirus sgRNA is translated into a single protein	156
5.28	Coronaviruses use a leaky scanning mechanism to synthesize	
	proteins from overlapping sequences	156
5.29	Coronaviruses may proofread RNA	
	during synthesis	157
5.30	Plants can also be infected by Class IV	
	RNA viruses	159
5.31	Comparing Class IV viruses reveals	
	common themes with variations	160
Essen	itial concepts	161
Ques	tions	161
Furth	er reading	162

6 GENE EXPRESSION AND GENOME REPLICATION IN THE NEGATIVE-STRAND RNA VIRUSES

6.1	Study of two historically infamous Class V viruses, rabies and influenza, were instrumental in the development of molecular and cellular virology	163
6.2	The mononegavirus replication cycle includes primary and secondary transcription catalyzed by the viral RdRp	164
6.3	Rhabdoviruses have linear (-) RNA genomes and encode five proteins	166
6.4	Rhabdoviruses produce five mRNAs with 5' caps and polyadenylated 3' tails through a start-stop mechanism	167
6.5	Rhabdovirus genome replication occurs through the use of a complete antigenome cRNP as a template	169
6.6	The paramyxoviruses are mononegaviruses that use RNA editing for gene expression	170

6.7	Filoviruses are filamentous	
	mononegaviruses that encode seven to nine proteins	173
6.8	The filovirus VP30 protein, not found in	0,010
0.0	other mononegaviruses, is required for	8.36
	transcription	175
6.9	Influenza is an example of an	175
	orthomyxovirus	175
6.10	Of the 17 influenza A proteins, 9 are	176
	found in the virion	1/6
6.11	Orthomyxovirus nucleic acid synthesis occurs in the host cell nucleus, not in	
	the cytoplasm	177
c 42	The first step of transcription by	- cont
6.12	influenza virus is cap snatching	178
6.13	An influenza cRNP intermediate is used	
0.1.5	as the template for genome replication	179
6.14	Arenavirus RNA genomes are ambisense	181
6.15	Expression of the four arenavirus	
	proteins reflects the ambisense nature	
	of the genome	182
Essen	tial concepts	183
Questions		184
Further reading		184
7	GENE EXPRESSION AND	
	GENOME REPLICATION IN	
	THE DOUBLE-STRANDED RNA	

	VIRUSES	185
7.1	The rotavirus replication cycle includes primary transcription, genome replication, and secondary transcription inside partially intact capsids in the host cytoplasm	186
7.2	Rotavirus A has a naked capsid with three protein layers enclosing 11 segments of dsRNA	186
7.3	Rotavirus A encodes 13 proteins	188
7.4	Synthesis of rotavirus nucleic acids occurs in a fenestrated double-layered particle	188
7.5	Translation of rotavirus mRNA requires NSP3 and occurs in viroplasm formed by NSP2 and NSP5	189
7.6	Rotavirus genome replication precedes secondary transcription	191
Esser	itial concepts	191
	tions	191
Furth	ner reading	192

8	GENE EXPRESSION AND GENOME REPLICATION IN THE DOUBLE-STRANDED DNA VIRUSES	193
8.1	DNA viruses can cause productive lytic infections, cellular transformation, or latent infections	194
8.2	Most Class I animal viruses rely on host transcription machinery for gene expression	194
8.3	Eukaryotic transcription is affected by the state of the chromatin	195
8.4	Eukaryotic capping, splicing, and polyadenylation occur co-transcriptionally	196
8.5	Polyomaviruses are small DNA viruses with early and late gene expression	199
8.6	The SV40 polyomavirus encodes seven proteins in only 5,243 bp of DNA	200
8.7	The synthesis of mRNA in SV40 is controlled by the noncoding control region	201
8.8	Late SV40 transcription is regulated by both host and viral proteins	202
8.9	Most Baltimore Class I viruses including polyomaviruses manipulate the eukaryotic cell cycle	204
8.10	Most Class I viruses prevent or delay cellular apoptosis	206
8.11	SV40 forces the host cell to express S phase genes and uses large T antigen and host proteins for genome replication	207
8.12	SV40 genome replication requires viral and host proteins to form active DNA replication forks	208
8.13	The papillomavirus replication cycle is tied closely to the differentiation status of its host cell	209
8.14	Human papillomaviruses encode about 13 proteins that are translated from polycistronic mRNA	211
8.15	The long control region of HPV regulates papillomavirus transcription in which pre-mRNA is subjected to alternative splicing	213
8.16	Leaky scanning, internal ribosome entry sites, and translation re-initiation lead to the expression of papillomavirus	212
8.17	proteins from polycistronic mRNA DNA replication in papillomaviruses is linked to bost cell differentiation status	213
	linked to host cell differentiation status	215

8.18	Papillomaviruses use early proteins to manipulate the host cell cycle and	
	apoptosis	216
8.19	Comparing the small DNA viruses	
	reveals similar economy in coding	
	capacity but different mechanisms for	
	gene expression, manipulating the host	246
	cell cycle, and DNA replication	216
8.20	Adenoviruses are large dsDNA viruses	8.2
	with three waves of gene expression	217
8.21	Adenoviruses have large naked	
	spherical capsids with prominent spikes	18.3
	and large linear dsDNA genomes	217
8.22	Adenoviruses encode early, delayed-	
	early, and late proteins	218
8.23	The large E1A protein is important for	
100	regulating the adenovirus cascade of	
	gene expression	220
8.24	Splicing of pre-mRNA was first	
	discovered through studying adenovirus	
	gene expression	220
8.25	Both host cells and adenovirus rely	
ULLU	on alternative splicing to encode	
	multiple proteins using the same DNA	
	sequence	221
8.26	Regulated alternative splicing of a late	
	adenovirus transcript relies on cis-acting	
	regulatory sequences, on the E4-ORF4	
	viral protein, and on host splicing	
	machinery	222
8.27	Adenovirus shuts off translation of host	
	mRNA, while ensuring translation of its	
	own late mRNAs through a ribosome-	
	shunting mechanism	224
8.28	DNA replication in adenovirus requires	
	three viral proteins even though the	
	genome is replicated in the host cell	
	nucleus	225
8.29	Herpesviruses have very large	
	enveloped virions and large linear	1
	dsDNA genomes	228
8.30	Lytic herpesvirus replication involves	
	a cascade with several waves of gene	
	expression	228
8.31	Groups of herpes simplex virus 1	
	proteins have functions relating to the	220
	timing of their expression	229
8.32	Waves of gene expression in herpesviruses	
	are controlled by transcription activation	220
	and chromatin remodeling	230
8.33		
	in concatamers	231

8.34	Poxviruses are extremely large dsDNA viruses that replicate in the host cytoplasm	231
8.35	Many vaccinia virus proteins are associated with the virion itself	233
8.36	Vaccinia RNA polymerase transcribes genes in three waves using different transcription activators	233
8.37	the unusual ends of the genome	236
8.38	sequence The synthetic demands on the host cell make vaccinia a possible anticancer	250
	treatment	238
Esser	ntial concepts	238
Ques	tions	239
Furth	ner reading	240
9	GENE EXPRESSION AND GENOME REPLICATION IN THE SINGLE-STRANDED DNA	
	VIRUSES	241
9.1	The ssDNA viruses express their genes and replicate their genomes in the nucleus	242
9.1 9.2	replicate their genomes in the nucleus Circoviruses are tiny ssDNA viruses with circular genomes	242 242
	replicate their genomes in the nucleus Circoviruses are tiny ssDNA viruses with circular genomes Although their genomes are shorter than an average human gene,	
9.2	replicate their genomes in the nucleus Circoviruses are tiny ssDNA viruses with circular genomes Although their genomes are shorter	242
9.2 9.3	replicate their genomes in the nucleus Circoviruses are tiny ssDNA viruses with circular genomes Although their genomes are shorter than an average human gene, circoviruses encode at least four proteins Both host and viral proteins are needed for circovirus genome replication Parvoviruses are tiny ssDNA viruses with linear genomes having hairpins	242 243 244
9.2 9.3 9.4	replicate their genomes in the nucleus Circoviruses are tiny ssDNA viruses with circular genomes Although their genomes are shorter than an average human gene, circoviruses encode at least four proteins Both host and viral proteins are needed for circovirus genome replication Parvoviruses are tiny ssDNA viruses	242 243
 9.2 9.3 9.4 9.5 9.6 9.7 	replicate their genomes in the nucleus Circoviruses are tiny ssDNA viruses with circular genomes Although their genomes are shorter than an average human gene, circoviruses encode at least four proteins Both host and viral proteins are needed for circovirus genome replication Parvoviruses are tiny ssDNA viruses with linear genomes having hairpins at both ends The model parvovirus MVM encodes six proteins using alternative splicing The model parvovirus MVM uses a rolling-hairpin mechanism for genome	242 243 244 245 245
 9.2 9.3 9.4 9.5 9.6 9.7 	replicate their genomes in the nucleus Circoviruses are tiny ssDNA viruses with circular genomes Although their genomes are shorter than an average human gene, circoviruses encode at least four proteins Both host and viral proteins are needed for circovirus genome replication Parvoviruses are tiny ssDNA viruses with linear genomes having hairpins at both ends The model parvovirus MVM encodes six proteins using alternative splicing The model parvovirus MVM uses a rolling-hairpin mechanism for genome replication	242 243 244 245 245 245
 9.2 9.3 9.4 9.5 9.6 9.7 Essei 	replicate their genomes in the nucleus Circoviruses are tiny ssDNA viruses with circular genomes Although their genomes are shorter than an average human gene, circoviruses encode at least four proteins Both host and viral proteins are needed for circovirus genome replication Parvoviruses are tiny ssDNA viruses with linear genomes having hairpins at both ends The model parvovirus MVM encodes six proteins using alternative splicing The model parvovirus MVM uses a rolling-hairpin mechanism for genome	242 243 244 245 245

Questions Further reading

10 GENE EXPRESSION AND GENOME REPLICATION IN E RETROVIRUSES AND Th

	HEPADNAVIRUSES	251
10.1	Viral reverse transcriptases have	
	polymerase and RNase H activity	254

249

10.2	Retroviruses are enveloped and have RNA genomes yet express their proteins from dsDNA	254	11	ASSEMBLY, RELEASE, AND MATURATION	277
10.3	Reverse transcription occurs during		11.1	The last stages of the virus replication cycle are assembly, release, and	
	transport of the retroviral nucleic acid to the nucleus, through		289	maturation	278
215	a discontinuous mechanism Retroviral integrase inserts the viral	255	11.2	Unlike cells, viruses assemble from their constituent parts	278
10.4	cDNA into a chromosome, forming proviral DNA that can be transcribed by host Pol II	256	11.3	Virions more structurally complex than TMV also reproduce by assembly, not by division	280
10.5	All retroviruses express eight essential proteins, whereas some such as HIV encode species-specific accessory		11.4	Typical sites of assembly in eukaryotic viruses include the cytoplasm, plasma membrane, and nucleus	281
10.6	proteins The retroviral LTR sequences interact with host proteins to regulate	259	11.5	Eukaryotic virus assembly must take cellular protein localization into account	282
	transcription	259	11.6	Capsids and nucleocapsids associate	202
10.7	The compact retroviral genome is used economically to encode many proteins			with genomes using one of two general strategies	283
	through the use of polyproteins, alternative splicing, and translation	250	11.7	Assembly of some viruses depends on DNA replication to provide the energy	
10.8	of polycistronic mRNA The HIV-1 accessory protein TAT is	260	11.8	to fill the icosahedral heads Assembly of some viruses depends on a	283
10.9	essential for viral gene expression The HIV-1 accessory protein Rev is	264	110	packaging motor to fill the icosahedral heads	284
10.9	essential for exporting some viral mRNA from the nucleus	265	11.9	Negative RNA viruses provide a model for concerted nucleocapsid assembly	286
10.10	accomplished by host Pol II	265	11.10	To assemble, some viruses require assistance from proteins not found	
10.11	HIV-1 is a candidate gene therapy vector for diseases that involve the immune cells normally targeted by HIV	266	11.11	in the virion Viruses acquire envelopes through one of two pathways	287 287
10.12	Hepadnaviruses are enveloped and have genomes containing both DNA		11.12	The helical vRNPs of influenza virus assemble first, followed by	207
10.13	and RNA in an unusual arrangement Hepadnaviruses use reverse	267		envelope acquisition at the plasma membrane	288
10.14	transcription to amplify their genomes	268	11.13	Some viruses require maturation reactions during release in order to	itnu i
	identical to the DNA in the infecting virion	269		form infectious virions	290
10.15	The tiny HBV genome encodes eight	205	11.14	Assembly of HIV occurs at the plasma membrane	290
	proteins through alternative splicing, overlapping coding sequences, and alternative start codons	269	11.15	Inhibition of HIV-1 maturation provides a classic example of structure–function research in medicine	291
10.16	HBV genome replication relies upon an elaborate reverse transcriptase		11.16	Release from bacterial cells usually occurs by lysis	293
Escont	mechanism	270	11.17	Release from animal cells can occur	
Questi	ial concepts	274		by lysis	295
	er reading	275 275	11.18	Release from animal cells can occur by budding	296

XIV CONT	EN	TS
----------	----	----

	Release from plant cells often occurs	200
	through biting arthropods	298
	ial concepts	298
Quest	ons	299
Furthe	er reading	299
	Unlice cells, vinces usenals from	
12	VIRUS-HOST INTERACTIONS	
	DURING LYTIC GROWTH	301
12.1	All viruses subvert translation	302
12.2	Bacteriophages subvert translation	
	indirectly	302
12.3	Animal viruses have many strategies to	
	block translation of host mRNA	304
12.4	Animal viruses cause structural changes	
	in host cells referred to as cytopathic effects	306
12.5	Viruses affect host cell apoptosis	306
12.6	Some viruses delay apoptosis in order	
	to complete their replication cycles	
	before the host cell dies	308
12.7	Some viruses subvert apoptosis in order	200
	to complete their replication cycles	309
12.8	Viruses use the ubiquitin system to their advantage	309
12.9	Viruses can block or subvert the	505
12.5	cellular autophagy system	311
12.10	Viruses subvert or co-opt the misfolded	
	protein response triggered in the	
	endoplasmic reticulum	312
12.11	Viruses modify internal membranes	
	in order to create virus replication compartments	312
Essent	tial concepts	315
Quest		315
		2.2

Further reading 316

13 PERSISTENT VIRAL INFECTIONS 317

13.1	Some bacteriophages are temperate and can persist as genomes integrated into their hosts' chromosomes	318
13.2	Bacteriophage λ serves as a model	510
15.2	for latency	318
13.3	The amount of stable CII protein in the cell determines whether the phage genome becomes a prophage	320
13.4	Activation of P_{RE} , P_{I} , and P_{antiQ} by CII	
1314	results in lysogeny	320
13.5	Stress triggers an exit from lysogeny	322

13.6	Some lysogens provide their bacterial hosts with virulence genes	323
13.7	Prophages affect the survival of their	525
	bacterial hosts	324
13.8	Persistent infections in humans include	
	those with ongoing lytic replication and latent infections	326
13.9	Human immunodeficiency virus causes persistent infections	326
13.10	Human herpesvirus 1 is a model for latent infections	327
13.11	Oncogenic viruses cause cancer through persistent infections	329
13.12	DNA viruses transform cells with	
	oncoproteins that affect the cell cycle and apoptosis	330
13.13	HPV oncoproteins E6 and E7 cause	
	transformation	331
13.14	HPV E6 and E7 overexpression occurs when the virus genome recombines with a host chromosome	332
13.15	Merkel cell polyomavirus is also	
	associated with human cancers	332
13.16	Epstein–Barr virus is an oncogenic herpesvirus	332
13.17	Latency-associated viral proteins are responsible for Epstein–Barr virus-	334
13 18	induced oncogenesis The Kaposi's sarcoma herpesvirus	554
13.10	also causes persistent oncogenic	
	infections	335
13.19	Hepatocellular carcinoma is caused by persistent lytic viral infections	336
13.20	Retroviruses have two mechanisms	
	by which they can cause cancer	337
13.21	Viral oncoproteins can be used to immortalize primary cell cultures	339
13.22	The human virome is largely	10.14
	uncharacterized but likely has effects	240
E	on human physiology	340 341
Quest	tial concepts ions	341
	er reading	342
i car ci li	alternative start codons	

14VIRAL EVASION OF INNATE
HOST DEFENSES345

14.1	Restriction enzymes are a component of innate immunity to bacteriophages	346
14.2	Bacteriophages have counterdefenses against restriction-modification systems	349

14.3	Human innate immune defenses operate on many levels	349
14.4	The human innate immune system is triggered by pattern recognition	349
14.5	Innate immune responses include cytokine secretion	351
14.6	Interferon causes the antiviral state	351
14.7	Some viruses can evade the interferon response	353
14.8	Neutrophils are active during an innate immune response against viruses	357
14.9	Viruses manipulate immune system communication to evade the net response	357
14.10	Inflammation is the hallmark of an innate immune response	358
14.11	In order to be recognized as healthy, all cells present endogenous antigens in MHC-I molecules	358
14.12	Cells infected by viruses produce and display viral antigens in MHC-I	359
14.13	Viruses have strategies to evade MHC-I presentation of viral antigens	360
14.14	Natural killer cells attack cells with reduced MHC-I display	360
14.15	The complement system targets enveloped viruses and cells infected	
	by them	361
14.16	Some viruses can evade the complement system	362
14.17	Viral evasion strategies depend on the coding capacity of the virus	362
14.18	In vertebrates, if an innate immune reaction does not clear an infection,	
	adaptive immunity comes into play	362
	ial concepts	363
Questi		364
Furthe	er reading	364
15		

15	VIRAL EVASION OF ADAPTIVE	
	HOST DEFENSES	365

15.1	CRISPR-Cas is an adaptive immune response found in bacteria	366
15.2	Some bacteriophages can evade or subvert the CRISPR-Cas system	370
15.3	The human adaptive immune response includes cell-mediated and humoral immunity	371
15.4	The human adaptive immune response has specificity because it responds to epitopes	
	chiropes	371

CON	TENTS	XV

1	5.5	Professional antigen-presenting cells degrade exogenous antigens and	
		display epitopes in MHC-II molecules	372
1	5.6	Some viruses evade MHC-II presentation	373
1	5.7	Lymphocytes that control viral infections have many properties in common	375
1	5.8	CD4+ helper T lymphocytes interact with viral epitopes displayed in MHC-II molecules	375
1	5.9	Antibodies are soluble B-cell receptors that bind to extracellular antigens such as virions	375
1	5.10		378
	5.11		570
9	5.11	Viruses have strategies to evade or subvert the antibody response	379
1	5.12	CD8+ cytotoxic T lymphocytes are crucial for controlling viral infections	380
1	5.13	Some viruses can evade the CTL response	381
1	5.14	Viruses that cause persistent infections evade immune clearance for a long	202
1	5.15	period of time The immune response to influenza serves is a comprehensive model for	382
1!	5.16	antiviral immune responses in general Influenza provides a model for how a lytic virus evades both innate and	383
		adaptive immunity long enough to replicate	386
E	senti	al concepts	387
	uestic		388
		reading	388
-	artifici	20013	500

16 MEDICAL APPLICATIONS OF MOLECULAR AND CELLULAR VIROLOGY 389

16.1	Vaccines are critical components of an effective public health system	390
16.2	Attenuated vaccines are highly immunogenic because they can still	
	replicate	391
16.3	Inactivated vaccines are composed	
	of nonreplicating virions	392
16.4	Subunit vaccines are composed of selected antigenic proteins	393
16.5	Although seasonal influenza vaccines are useful, a universal flu vaccine is	
	highly sought after	394

XVI CONTENTS

16.6	Preventative HIV vaccines are in development	396
16.7	Extreme antigenic variation is a problem for developing an HIV vaccine	398
16.8	An effective HIV vaccine may require stimulating a strong CTL response	398
16.9	Antiviral drugs target proteins unique to viruses and essential for their replication cycle	399
16.10	Many antiviral drugs are nucleoside or nucleotide structural analogs that target the active site of viral	
	polymerases	401
16.11	Drugs to treat influenza target the uncoating and release stages of viral replication	402
16.12	Drugs to treat hepatitis C virus target the viral polymerase	403
16.13	Drugs to treat HIV target many stages of the virus replication cycle	404
16.14	Viral evolution occurs in response to selective pressure from antiviral drugs	406
16.15	It might be possible to develop bacteriophage therapy to treat people with antibiotic-resistant bacterial	
	infections	407
16.16	Engineered viruses could in principle be used for gene therapy to treat cancer and other conditions	408
16.17	Gene therapy and oncolytic virus	400
10.17	treatments currently in use	410
16.18	Therapeutic applications of CRISPR-Cas technology	415
Essent	ial concepts	416
Quest	ions	417
Furthe	er reading	418

17 VIRAL DIVERSITY, ORIGINS, AND EVOLUTION

17.1	The viral world is extremely diverse	420
17.2	Satellite viruses and nucleic acids require co-infection with a virus	5.01
	to spread	421
17.3	Viroids are infectious RNA molecules	
	found in plants	423

17.4	Transposons and introns are subviral	122
949	entities and a second and a second	423
17.5	Viruses have ancient origins	425
17.6	Viral hallmark proteins can be used to trace evolutionary history	425
17.7	Metagenomics will revolutionize evolutionary understanding of viruses	427
17.8	Viral genetic diversity arises through	421
17.0	mutation and recombination	429
17.9	Genetic diversity among influenza A	
	viruses arises through mutation and	420
47.40	recombination	430
17.10	Influenza A spike proteins are particularly diverse	431
17.11	Variations among influenza A viruses	
	reflects genetic drift and natural	
	selection	432
17.12	Pandemic influenza A strains have	433
47.43	arisen through recombination	435
17.13	New pandemic influenza A strains may be able to arise through mutation	435
17.14		
	influence viral evolution	436
17.15	Some viruses and hosts coevolve	438
17.16	Medically dangerous emerging viruses are zoonotic	440
17.17	HIV exhibits high levels of genetic	110
	diversity and transferred from apes to	
	humans on four occasions	442
17.18	HIV-1 has molecular features that	
	reflect adaptation to humans	443
17.19	Viruses and subviral entities are	
47.70	common in the human genome	444
17.20	Viruses and subviral entities have strongly affected the evolution of	
	organisms including humans	445
17.21	Virology unites the biosphere	446
	tial concepts	446
Quest	through the second but the event sectors	447
	er reading	447
GLO	SSARY	449
ANS	WERS	473
INDE	X	487