Content

Welcome message	5
Organizer – Czech Centre for Phenogenomics	6
Programme	7
Keynote speaker	9
Invited speakers	10
Abstracts	14
Pääbo: A Neandertal Perspective on Humans Origins	14
Session 1 - Long non-coding RNA	15
Leucci: LncRNAs and beyond: uncoupling cytosolic and mitochondrial-	
translation as an effective anti-melanoma strategy	16
Meister: Mechanistic insights into non-coding RNA function in metabolism	
and disease	16
Session 2 - Long non-coding RNA	17
Svoboda: Mammalian RNAi - how long non-coding RNA become small ones	18
Kornfeld: Long Noncoding RNAs in Energy Homeostasis and Metabolic Disease	18
Session 3 - Short talks	19
Hortava Kahoutkova: Calcineurin-NFAT alters the energy metabalism of	
activated human monocytes	20
Gewartowska: A new mause model for Osteogenesis imperfecta reveals a	link
between polydenylation by TENT5A and the pathogenesis of the disease	21
Davidova: Elimination of senescent cells by mitochondrial targeting	
Improves type 2 diabetes mellitus	22
Sorg: Understanding the variability of the fecal microbiota and large scale	1
evaluation of Host – Microbial genetics interactions: Impact of the IMPC	
knock-out resource for the microbioto community	23
Rahim: Automated Big Data Analysis Methods and Their Applications	
for Cell Population Identification	24
Khan: The INFRAFRONTIER Research Infrastructure and the European	
Mouse Mutant Archive (EMMA)	25
Session 4 - Metabolism	26
Rozman: Exploiting the IMPC resource to detect new gene functions	
linked to human metabolic disease	27
Werner: Mouse phenotypes are directly correlated to gene regulation	
- revealing MDRE about promoters	27
Teperino: Epigenetic control of metabolism within and across generations	28
Seong: Single cell transcriptomic analysis of belge adipagenesis in	
CL-treated mause	28
Session 5 - Metabolism	29
Boscaro: Phenotyping or distressing? Improved animal welfare	
and high quality data	30
Zrostlikova: Fram data to conclusions: Software workflows	
for metabalamic analysis	30

Mölich: ¹⁰ C-Glucose Oxidation Testing in Laboratory Mice:	
Effects of temperature, dose, and nutritional state	31
Poster session	32
(PO-1) The role of TENTS poly(A) polymeroses in mouse obgenesis	33
(PO-2) Non-canonical poly(A) polymerase TENT5C regulates B cell	
humoral response and differentiation	34
(PO-3) Vps13c knockout mice – known human phenotype-related	
and mouse-specific characteristics	35
(PD=4) Preservation for long-distance transportation of sperm	
and systematic analysis of mouse sperm viability, cryopreservation	
and recovery ability	36
(PO-5) Self-organizing maps improve efficiency of high-dimensional	
cytometry data analysis in massive immuno-phenotyping	35
(PO-6) CLUH: a potential novel player in neanatal thermogenesis	37
(PO-7) Sequence determinants regulating Charme long noncoding.	
RNA epigenetic activities	38
(PD-8) Loss of function mutation of Fam46a in mice causes skeletal	
asteodystrophy with amelogenesis imperfecta	39
(PO-9) Oxidative phosphorylation provides stress resistance	
in guiescent cells	39
(PO-10) Mitochondrial phosphalipase A2y participates in cellular	
antioxidant and anti-inflammatory protection in vivo	40
(PO-11) Biochemistry and Hematology Unit	42
(PO-12) Bioimaging & Embryology Unit	43
(PD-13) Cardiovascular Unit	44
(PO-14) Hearing & Electrophysiology Unit	46
(PO-15) Histopathology Unit	47
(PO-16) MALOI Imaging Unit	48
(PO-17) Immunology Unit	49
(PO-18) Lung Unit	50
(PO-19) Metabolism Unit	52
(PO-20) Metabolomics Unit	53
(PD-21) PDX & Concer Models Unit	54
(PD-22) Vision Unit	56
(PO-23) Neurobiology & Behaviour Unit	57
(PO-24) Bioinformatician Unit	58
(PO-25) Transgenic and Archlving Module (TAM)	60
List of participants	62
Notes	65