Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators

Tailen Hsing

Professor, Department of Statistics, University of Michigan, USA

Randall Eubank

Professor Emeritus, School of Mathematical and Statistical Sciences, Arizona State University, USA

Provides essential coverage of functional data analysis and related areas

This book provides a uniquely broad compendium of the key mathematical concepts and results that are relevant to the theoretical development of functional data analysis (FDA).

The self-contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces, and perturbation theory for both self-adjoint and non-self-adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for mean elements, covariance operators, principle components, regression functions, and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA, and discriminant analysis.

Key features:

- Provides a concise but rigorous account of the theoretical background of FDA
- Introduces topics in various areas of mathematics, probability, and statistics from the perspective of FDA
- Presents a systematic exposition of the fundamental statistical issues in FDA
- Develops all material from first principles, assuming no prior knowledge of linear operators or FDA

This book is a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.

WILEY

Also available as an e-book

Contents

Preface

Trefuce		vnailzed ivasi squares earrhators	XI	
1	Introduction		1	
	1.1	Multivariate analysis in a nutshell	2	
	1.2	The path that lies ahead	13	
2	Vector and function spaces		15	
	2.1	Metric spaces	16	
	2.2	Vector and normed spaces	20	
	2.3	Banach and \mathbb{L}^p spaces	26	
	2.4	Inner Product and Hilbert spaces	31	
	2.5	The projection theorem and orthogonal decomposition	38	
	2.6	Vector integrals	40	
	2.7	Reproducing kernel Hilbert spaces	46	
	2.8	Sobolev spaces	55	
3	Linear operator and functionals		61	
	3.1	Operators	62	
	3.2	Linear functionals	66	
	3.3	Adjoint operator	71	
	3.4	Nonnegative, square-root, and projection operators	74	
	3.5	Operator inverses	77	
	3.6	Fréchet and Gâteaux derivatives	83	
	3.7	Generalized Gram-Schmidt decompositions	87	
4	Compact operators and singular value decomposition		91	
	4.1	Compact operators	92	
	4.2	Eigenvalues of compact operators	96	
	4.3	The singular value decomposition	103	
	4.4	Hilbert-Schmidt operators	107	
	4.5	Trace class operators	113	

|--|

		Integral operators and Mercer's Theorem	116 123
	4.8	Operators on an RKHS Simultaneous diagonalization of two nonnegative definite	125
		operators	120
5	Pertu	rbation theory	129
		Perturbation of self-adjoint compact operators	129
		Perturbation of general compact operators	140
6		thing and regularization	147
		Functional linear model	147
	6.2	Penalized least squares estimators	150
	6.3	Bias and variance	157
	6.4	A computational formula	158 161
	6.5 6.6	Regularization parameter selection Splines	165
	0.0	opinies	
7	Rand	lom elements in a Hilbert space	175
	7.1	Probability measures on a Hilbert space	176
	7.2	Mean and covariance of a random element of a Hilbert space	178
	7.3	Mean-square continuous processes and the Karhunen-Loeve	101
		Theorem	184
	7.4	Mean-square continuous processes in $\mathbb{L}^2(E, \mathscr{B}(E), \mu)$	190
	7.5	RKHS valued processes	195
	7.6	The closed span of a process	198
	7.7	Large sample theory	203
8	Mea	n and covariance estimation	211
	8.1	Sample mean and covariance operator	212
	8.2	Local linear estimation	214
	8.3	Penalized least-squares estimation	231
9	Prin	cipal components analysis	251
	9.1	Estimation via the sample covariance operator	253
	9.2	Estimation via local linear smoothing	255
	9.3	Estimation via penalized least squares	261
1	0 Can	onical correlation analysis	265
		CCA for random elements of a Hilbert space	267
		Estimation	274
	10.3	Prediction and regression	281

CONTENTS ix

10.4 Factor analysis	284
10.5 MANOVA and discriminant analysis	288
10.6 Orthogonal subspaces and partial cca	294
11 Regression	305
11.1 A functional regression model	305
11.2 Asymptotic theory	308
11.3 Minimax optimality	318
11.4 Discretely sampled data	321
References	327
Index	331
Notation Index	334