Contents

P

2

3

	Prej	face	page ix
	Con	nmon Optimization Techniques, Equations, Symbols, and Acronyms	X111
art l	Dime	nsionality Reduction and Transforms	1
arti	Dime	Unsupervised Learning: k-means Clustering	
	Sing	jular Value Decomposition (SVD)	3
	1.1	Overview	3
	1.2	Matrix Approximation	7
	1.3	Mathematical Properties and Manipulations	10
	1.4	Pseudo-Inverse, Least-Squares, and Regression	15
	1.5	Principal Component Analysis (PCA)	21
	1.6	Eigenfaces Example	25
	1.7	Truncation and Alignment	30
	1.8	Randomized Singular Value Decomposition	37
	1.9	Tensor Decompositions and N-Way Data Arrays	41
		The Buckpropagation Algorithm	
	Four	rier and Wavelet Transforms	47
	2.1	Fourier Series and Fourier Transforms	47
	2.2	Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT)	56
	2.3	Transforming Partial Differential Equations	63
	2.4	Gabor Transform and the Spectrogram	69
	2.5	Wavelets and Multi-Resolution Analysis	75
	2.6	2D Transforms and Image Processing	77
		-Driven Oynemical Systems	
	Spar	rsity and Compressed Sensing	84
	3.1	Sparsity and Compression	84
	3.2	Compressed Sensing	88
	3.3	Compressed Sensing Examples	92
	3.4	The Geometry of Compression	95
	3.5	Sparse Regression	98
	3.6	Sparse Representation	103
	3.7	Robust Principal Component Analysis (RPCA)	107
	3.8	Sparse Sensor Placement	110

Chele Study: Inverted Pendulum on a Cape noticeles labold bno noisearges

vi	Cont	tents	
Part II	Macl	hine Learning and Data Analysis	115
4	Rea	ression and Model Selection	117
-	4 1	Classic Curve Fitting	118
	42	Nonlinear Regression and Gradient Descent	123
	43	Regression and $Ax = b$: Over- and Under-Determined Systems	130
	4.4	Ontimization as the Cornerstone of Regression	136
	4.5	The Pareto Front and Lex Parsimoniae	140
	4.6	Model Selection: Cross-Validation	143
	4.7	Model Selection: Information Criteria	148
5	Clus	stering and Classification	154
	5.1	Feature Selection and Data Mining	155
	5.2	Supervised versus Unsupervised Learning	160
	5.3	Unsupervised Learning: k-means Clustering	164
	5.4	Unsupervised Hierarchical Clustering: Dendrogram	168
	5.5	Mixture Models and the Expectation-Maximization Algorithm	172
	5.6	Supervised Learning and Linear Discriminants	176
	5.7	Support Vector Machines (SVM)	180
	5.8	Classification Trees and Random Forest	185
	5.9	Top 10 Algorithms in Data Mining 2008	190
•	New	A signation of Deep Learning	105
0	Neu	rai Networks and Deep Learning	195
	6.1	Neural Networks: 1-Layer Networks	190
	6.2	Multi-Layer Networks and Activation Functions	199
	6.3	The Stephentic Condicat Descent Algorithm	204
	6.4	The Stochastic Gradient Descent Algorithm	209
	6.5	Deep Convolutional Neural Networks	212
	6.6	Neural Networks for Dynamical Systems	210
	0.7	The Diversity of Neural Networks	220
Part III	Dyn	amics and Control	227
i ui t iii	Cyn		227
7	Data	a-Driven Dynamical Systems	229
	7.1	Overview, Motivations, and Challenges	230
	7.2	Dynamic Mode Decomposition (DMD)	235
	7.3	Sparse Identification of Nonlinear Dynamics (SINDy)	247
	7.4	Koopman Operator Theory	257
	7.5	Data-Driven Koopman Analysis	266
0	Lino	ar Control Theory	276
	8 1	Closed-Loon Feedback Control	270
	82	Linear Time-Invariant Systems	281
	8.2	Controllability and Observability	201
	8.1	Ontimal Full-State Control: Linear Quadratic Regulator (LOR)	207
	0.4	Opumai Fun-State Control. Emeai Quadratic Regulator (EQR)	292

		Contents	vii	
	8.5 Optimal Full-State Estimation: The Kalman Filter		296	
	8.6 Optimal Sensor-Based Control: Linear Quadratic Gaussia	an (LQG)	299	
	8.7 Case Study: Inverted Pendulum on a Cart		300	
	8.8 Robust Control and Frequency Domain Techniques		308	
9	Balanced Models for Control			
	9.1 Model Reduction and System Identification		321	
	9.2 Balanced Model Reduction		322	
	9.3 System identification		336	
10	Data-Driven Control			
	10.1 Nonlinear System Identification for Control		346	
	10.2 Machine Learning Control		352	
	10.3 Adaptive Extremum-Seeking Control		362	
Part IV	Reduced Order Models		373	
11	Reduced Order Models (ROMs)		375	
	11.1 POD for Partial Differential Equations		375	
	11.2 Optimal Basis Elements: The POD Expansion		381	
	11.3 POD and Soliton Dynamics		387	
	11.4 Continuous Formulation of POD		391	
	11.5 POD with Symmetries: Rotations and Translations		396	
12	Interpolation for Parametric ROMs		403	
	12.1 Gappy POD		403	
	12.2 Error and Convergence of Gappy POD		409	
	12.3 Gappy Measurements: Minimize Condition Number		413	
	12.4 Gappy Measurements: Maximal Variance		418	
	12.5 POD and the Discrete Empirical Interpolation Method (I	DEIM)	423	
	12.6 DEIM Algorithm Implementation		426	
	12.7 Machine Learning ROMs		429	
	Glossary		436	
	Bibliography		443	
	Index		4/1	