Contents

Preface	v
Chapter 1. Elements of Multilinear Algebra	1.6 1
Exercises	8
Chapter 2. Differential Forms in \mathbb{R}^n	11
§2.1. Vector Fields and Differential Forms	11
§2.2. Closed and Exact Differential Forms	18
§2.3. Gradient, Divergence and Curl	23
§2.4. Singular Cubes and Chains	26
§2.5. Integration of Differential Forms and Stokes' Theorem	30
§2.6. The Classical Formulas of Green and Stokes	35
§2.7. Complex Differential Forms and Holomorphic Functions	36
§2.8. Brouwer's Fixed Point Theorem	38
Exercises	43
Chapter 3. Vector Analysis on Manifolds	47
§3.1. Submanifolds of \mathbb{R}^n	47
§3.2. Differential Calculus on Manifolds	54
§3.3. Differential Forms on Manifolds	67
§3.4. Orientable Manifolds	69
§3.5. Integration of Differential Forms over Manifolds	76
§3.6. Stokes' Theorem for Manifolds	79
§3.7. The Hedgehog Theorem (Hairy Sphere Theorem)	81
	xi

§3.8. The Classical Integral Formulas	82
§3.9. The Lie Derivative and the Interpretation of the Divergence	87
§3.10. Harmonic Functions	94
§3.11. The Laplacian on Differential Forms	100
Exercises	105
Chapter 4. Pfaffian Systems	111
§4.1. Geometric Distributions	111
§4.2. The Proof of Frobenius' Theorem	116
§4.3. Some Applications of Frobenius' Theorem	120
Exercises	126
Chapter 5. Curves and Surfaces in Euclidean 3-Space	129
§5.1. Curves in Euclidean 3-Space	129
§5.2. The Structural Equations of a Surface	141
§5.3. The First and Second Fundamental Forms of a Surface	147
§5.4. Gaussian and Mean Curvature	155
§5.5. Curves on Surfaces and Geodesic Lines	172
§5.6. Maps between Surfaces	180
§5.7. Higher-Dimensional Riemannian Manifolds	183
Exercises	198
Chapter 6. Lie Groups and Homogeneous Spaces	207
§6.1. Lie Groups and Lie Algebras	207
§6.2. Closed Subgroups and Homogeneous Spaces	215
§6.3. The Adjoint Representation	221
Exercises	226
Chapter 7. Symplectic Geometry and Mechanics	229
§7.1. Symplectic Manifolds	229
§7.2. The Darboux Theorem	236
§7.3. First Integrals and the Moment Map	238
§7.4. Completely Integrable Hamiltonian Systems	241
§7.5. Formulations of Mechanics	252
Exercises	264
Chapter 8. Elements of Statistical Mechanics and Thermodynamics	271
§8.1. Statistical States of a Hamiltonian System	271

§8.2. Thermodynamical Systems in Equilibrium 2	83
Exercises 2	92
Chapter 9. Elements of Electrodynamics 2	95
§9.1. The Maxwell Equations 2	95
§9.2. The Static Electromagnetic Field 2	99
§9.3. Electromagnetic Waves 3	04
§9.4. The Relativistic Formulation of the Maxwell Equations 3	11
§9.5. The Lorentz Force 3	17
Exercises 3	25
Bibliography 3	33
Symbols 3	37
Index 3	39

and the second second

depending on k vectors from the vector space V, is called an enterior (multilinear), form of degree k. The untisymmetry of ω^{*} means that, for all k vectors v_{1}, \ldots, v_{2} from V and any permutation $\sigma \in S_{0}$ of the numbers $\{1, \ldots, 7_{k}\}$, the following equation holds:

Here $\operatorname{sgn}(\sigma)$ denotes the sign of the permutation σ , ht particular, ω^{β} through $\operatorname{sgn}(\sigma)$ at transposition of the indices *i* and γ .

 $[m_1(p_1,\ldots,p_{n-1},p_{n-1},p_{n-1},p_{n-1},p_{n-1},p_{n-1}] \rightarrow [m_1(p_1,\ldots,p_{n-1},p_{$

The vector space of all exterior k-forms will be denoted by $\Lambda^{*}(V^{*})$. Furthermore, we will use the conventions $\Lambda^{*}(V^{*}) = \mathbb{K}$ and $\Lambda^{*}(V^{*}) = V^{*}$.

Fixing an arbitrary basis e_1, \ldots, e_n in the n-dimensional vector space V, we see that each exterior k-form ω^n is uniquely determined by its values on all k-tuples of the form e_n, \ldots, e_n , where the indices are always supposed to be strictly ordered, $J = (n < \ldots < i_k)$. On the other hand, a k-form can be defined by arbitrarily prescribing its values on all ordered k-tuples of basis vectors and extending it to all s-tuples of vectors in an antisymmetric and