Detailed table of contents

List of contributors	xiii
1 Introduction	1
Gabriel Gellner, Kevin S. McCann, and Emily J. Champagne	
1.1 This book and its predecessors	1
1.2 This book: Themes and directions	2
2 Species coexistence	5
Peter Chesson	
2.1 Introduction	5
2.2 Models	6
2.3 Overall interaction and average fitness differences	11
2.4 Competition for resources	12
2.5 Role of natural enemies	15
2.6 Role of environmental variation	18
2.7 Discussion	21
Acknowledgments	24
References	24
3 The synergistic effects of interaction strength and lags on ecological stability	28
Gabriel Gellner, Kevin S. McCann, and Christopher Greyson-Gaito	
3.1 Introduction	28
3.2 Population models: The interactive role of growth and lags	31
3.3 Consumer-Resource models: The interactive role of IS and lags	34
3.4 Lag excitation and lag interference	36
3.5 Asynchrony as a form of lag interference?	36
3.6 Summary	38
References	38
4 Non-equilibrium dynamics and stochastic processes	40
Karen C. Abbott	
4.1 Introduction to stochasticity and transients	40
4.2 Challenge 1: Stability in stochastic ecological systems	42
4.2.1 Why is this a challenge for non-equilibrium systems?	42
4.2.2 A way forward	44
4.2.3 Lesson from Challenge 1: Non-equilibrium dynamics strengthen	
ecological understanding	46

vii

	4.3	Challenge 2: Predicting regime shifts	46
		4.3.1 Why is this a challenge for non-equilibrium systems?	46
		4.3.2 A way forward	46
		4.3.3 Lesson from Challenge 2: Unstable equilibria can reveal a lot about	
		non-equilibrium dynamics	49
	4.4	Building on these lessons to confront future challenges	50
		References	51
5	The	e impact of population structure on population and community dynamics	53
		lré M. de Roos	
	5.1	Introduction	53
		State concepts in SPMs	54
		Types of structured population models	55
		Ecological consequences of changing population structure	60
	0.1	5.4.1 Juvenile and adult-driven population cycles	60
		5.4.2 Biomass overcompensation	62
		5.4.3 Community consequences of biomass overcompensation	64
	55		
		Interfacing theory and data	67
		On generality and model specificity	69
	5./	Outlook	70
		References	71
6	Mo	dels for large ecological communities—a random matrix approach	74
		ano Allesina and Jacopo Grilli	
		Introduction	74
		May's stability criterion	74
		Random matrices	73
		Fundamental results	78 79
		Structured random matrices	
			83
		Other applications	88
	0./	Open problems and conclusions	89
		References	91
7	A st	tructural theory of mutualistic networks	93
		i Bascompte and Antonio Ferrera	55
		Introduction	93
		A purely dynamic stability approach to mutualistic networks	
	1.2	7.2.1 Early models	95 05
			95
		7.2.2 Adding non-linear functional responses	95
	70	7.2.3 Adding interspecific competition within sets	97
	1.3	A structural stability approach to mutualistic networks	99
		7.3.1 Preliminary work on the limits to the number of coexisting	
		species in purely competitive systems	99
		7.3.2 Limits to the number of coexisting species in systems with	
		competition plus mutualism	104
	-	7.3.3 Robustness of mutualistic networks	108
	7.4	Concluding remarks	113
		References	114

8		pretical ecology, concepts, and applications: A data-driven approach to	
		plex ecological systems	116
	Michi	o Kondoh, Kazutaka Kawatsu, Yutaka Osada, and Masayuki Ushio	
	8.1	Interspecific interactions and ecological dynamics	116
		8.1.1 Population dynamics and interspecific interactions	116
		8.1.2 Community dynamics and interspecific interactions	117
	8.2	Nature of population-level interspecific interactions	119
		8.2.1 Diversity in behavioral mechanisms	119
		8.2.2 Scale dependency of interspecific interactions	119
		8.2.3 Dynamic nature of interspecific interactions	120
	8.3	How to study interspecific interactions in nature	121
		8.3.1 Identifying population-level interactions	121
		8.3.2 Identification of interactions based on behavior by individuals	121
		8.3.3 Manipulative field experiments	122
	8.4	Modern Data-Driven approach to interspecific interactions	123
		8.4.1 Estimating population-level interactions from time-series data	123
		8.4.2 Convergent cross mapping and multivariate S-map	124
		8.4.3 Application of EDM to interaction network studies	125
	8.5	Conclusion and future directions	128
		References	129
9	Trait	-based models of complex ecological networks	134
	Ulrich	Brose	
	9.1	Modeling complex ecological networks	134
	9.2	Allometric population models	136
	9.3	Allometric models of complex communities: The Yodzis	
		and Innes approach	137
	9.4	More complex allometries	138
	9.5	Modeling the temperature-dependence of network dynamics	139
	9.6	Outlook	139
		References	141
	1.48	12.1. Introduction of the Art of the Contract of the	
10		ogical networks: From structure to dynamics	143
	Sonia		
		Brief introduction	143
	10.2	What is a network?	144
	10.3	Networks in ecology	146
		10.3.1 Interaction networks	146
		10.3.2 Toward multi-layer interaction networks	147
		10.3.3 Other types of ecological networks	147
		10.3.4 Broad questions asked in ecological networks	149
	10.4	Quantifying networks structure	149
		10.4.1 Local network descriptors	150
		10.4.2 Quasi-local network descriptors (intermediate description level)	150
		10.4.3 Global network descriptors	150
		10.4.4 Extensions to multilayer networks	152
	10.5	Structural properties of ecological networks	152
		10.5.1 Food webs	152

		10.5.2 Mutualistic webs	154
	10.6	From the structure to the dynamics of ecological networks	154
		Challenges	155
	10.8	Conclusion	157
		References	157
1		based ecological and eco-evolutionary theory	161
		topher A. Klausmeier, Colin T. Kremer, and Thomas Koffel	
	11.1	Overview of trait-based ecology and evolution	161
		11.1.1 Why trait-based ecology?	161
		11.1.2 What are traits?	162
		11.1.3 Historical survey of trait-based theories	162
		11.1.4 Overview of rest of chapter	164
	11.2	Basic ideas	165
		11.2.1 Density-independent models with traits and optimization theory	165
		11.2.2 Density-dependent models with traits	167
		11.2.3 Applications	175
		Other trait-based frameworks	176
	11.4	Extensions/Complications	180
		11.4.1 Traits in time	180
		11.4.2 Traits in space	181
	11 -	11.4.3 Multiple traits	183
	11.5	Frontiers of trait-based modeling	184
		11.5.1 Comparisons with empirical systems	184
		11.5.2 Linking trait- and species-based approaches	185
		11.5.3 Using trait-based theory to improve Earth Systems Models	186
		11.5.4 Final thoughts References	187
		References	187
12	Towa	ard a general theory of metacommunity ecology	195
		nique Gravel and François Massol	155
		Introduction	195
		A general model for "meta" ecology	196
		12.2.1 The heritage of the Levins' model of colonization and	170
		extinction dynamics	197
		12.2.2 Local demography versus regional processes	198
	12.3	Spatial heterogeneity	198
		12.3.1 Environmental variation	198
		12.3.2 Dispersal limitation	201
	12.4	Coexistence and Persistence	202
		12.4.1 Introducing species interactions	202
		12.4.2 Technique for invasibility analysis	204
		12.4.3 Competition	204
		12.4.4 Food webs	210
		12.4.5 Mutualism	210
	12.5	Moments of metacommunities	211
		12.5.1 Competition	211

		12.5.2 Predator-prey interactions	212
	12.6	Discussion	213
		12.6.1 Extension to multi-species communities	214
		12.6.2 From coexistence to dynamical stability	215
	12.7	Conclusion	217
		References	217
13	Theo	ries of diversity in disease ecology	221
		Perkins and Jason R. Rohr	
	13.1	Introduction	221
		Host diversity	222
		13.2.1 The basics of host diversity-infectious disease theory	223
		13.2.2 Mechanisms for host diversity-infectious disease interactions	224
		13.2.3 Evidence in support of proposed mechanisms for host	
		diversity-infectious disease interactions	225
		13.2.4 Application of theory on host diversity to disease management	226
	13.3	Pathogen diversity	227
		13.3.1 A community ecology framework for pathogen coexistence	227
		13.3.2 A diverse web of interactions among pathogens	228
		13.3.3 Theoretical results about pathogen coexistence	229
		13.3.4 Application of theories of pathogen diversity to disease	
		management	231
	13.4	Are theories of host and pathogen diversity ships passing in the night?	232
	13.5	Diversifying the use of theory to address questions of diversity in	
		disease ecology	233
		Acknowledgments	235
		References	235
14	The in	npact of temperature on population and community dynamics	243
	David	A. Vasseur	
	14.1	Introduction	243
	14.2	Population dynamics in varying environments	244
	14.3	Focusing our paradigm: Which parameters of trophic models	
		should we study?	246
	14.4	Temperature dependence of carrying capacity	249
	14.5	Unimodal responses and community dynamics	250
	14.6	Warming and food webs	251
	14.7	Temperature variation at shorter time scales	251
	14.8	Deriving an r-K temperature dependent model	252
	14.9	Temperature by density interactions	254
		Temperature variation, dynamics, and extinction in r-K models	255
	14.11	Summary and future directions	258
		References	259
15		native stable states, tipping points, and early warning signals	and .
		ological transitions	263
		I. Drake, Suzanne M. O'Regan, Vasilis Dakos, Sonia Kéfi, and Pejman Rohani	
	15.1	Introduction	263

		15.1.1 Tipping points in dynamical systems	263
		15.1.2 Early warning signals	264
		15.1.3 Bifurcation delay	268
	15.2	Theory	268
		15.2.1 Birth-death processes	268
		15.2.2 Case Study 1: The Logistic model with harvesting	269
		15.2.3 Case Study 2: The Levin's metapopulation model	271
	15.3		273
		15.3.1 Lab experiments	273
		15.3.2 Field experiments	276
		15.3.3 Observational studies	277
	15.4	Spatial indicators of resilience	277
		15.4.1 Critical slowing down spatial indicators	278
		15.4.2 Two broad types of patterns in drylands	278
		15.4.3 Structural early warning signals	282
	15.5	Conclusion	282
		Acknowledgments	282
		References	282
16	Areas	s of current and future growth	285
		S. McCann and Gabriel Gellner	
Gl	ossary		289

Index

289 295