Contents

Preface

1	Prel	iminaries	6.8 22
	1.1	Sets	1
	1.2	Summation	4
	1.3	Mathematical Induction	8
	1.4	Functions	17
	1.5	The Division Algorithm	23
	1.6	Exercises	28
2	Con	nbinatorial Analysis	34
	2.1	Introduction	34
	2.2	The Basic Principle of Counting	34
	2.3	Permutations	36
	2.4	Combinations	40
	2.5	Counting the Number of Solutions	45
	2.6	The Inclusion–Exclusion Identity	47
	2.7	Using Recursion Equations	52
	2.8	The Pigeonhole Principle	61
	2.9	Exercises	63
3	Probability		
	3.1	Probabilities and Events	70
	3.2	Probability Experiments Having Equally Likely	
		Outcomes	74
	3.3	Conditional Probability	77
	3.4	Computing Probabilities by Conditioning	80
	3.5	Random Variables and Expected Values	85
	3.6	Exercises	94
80	2	Introduction to Sorting	8.1
4	Mat	hematics of Finance	97
	4.1	Interest Rates	97
	4.2	Present Value Analysis	100
	4.3	Pricing Contracts via Arbitrage	104
		4.3.1 An Example in Options Pricing	104
		4.3.2 Other Examples of Pricing via Arbitrage	107

page xi

	4.4	The Arbitrage Theorem	111
	4.5	The Multiperiod Binomial Model	116
		4.5.1 The Black–Scholes Option Pricing Formula	120
	4.6	Exercises	121
5	Gra	phs and Trees	124
	5.1	Graphs	124
	5.2	Trees	127
	5.3	The Minimum Spanning Tree Problem	131
	5.4	Cliques and Independent Sets	134
	5.5	Euler Graphs	142
	5.6	Exercises	144
17		LA Functions	
6	Dire	ected Graphs	150
	6.1	Directed Graphs	150
	6.2	The Maximum Flow Problem	150
	6.3	Applications of the Maximum Flow Problem	160
		6.3.1 The Assignment Problem	160
		6.3.2 The Tournament Win Problem	163
		6.3.3 The Transshipment Problem	166
		6.3.4 An Equipment Selection Problem	167
	6.4	Shortest Path in Digraphs	170
	6.5	Exercises	175
		2.7 Using Recursion Equations	
7	Line	ear Programming	180
	7.1	The Standard Linear Programming Problem	180
	7.2	Transforming to the Standard Form	184
		7.2.1 Minimization and Wrong-Way Inequality	
		Constraints analysis bas astraids do 9 1.2	185
	_	7.2.2 Problems with Variables Unconstrained in Sign	186
	7.3	The Dual Linear Programming Problem	188
	7.4	Game Theory	194
	7.5	Exercises	199
50			
8	Sort	ing and Searching	203
	8.1	Introduction to Sorting	203
	8.2	The Bubble Sort	203
	8.3	The Quicksort Algorithm	206
	8.4	Merge Sorts	209
	8.5	Sequential Searching	210
	8.6	Binary Searches and Rooted Trees	212
	8.7	Exercises	218

1X

9	Stati	stics	220
	9.1	Introduction	220
	9.2	Frequency Tables and Graphs	220
	9.3	Summarizing Data Sets	223
		9.3.1 Sample Mean, Sample Median, and	
		Sample Mode	223
		9.3.2 Sample Variance and Sample Standar	rd
		Deviation	225
	9.4	Chebyshev's Inequality	227
	9.5	Paired Data Sets and the Sample Correlation	egent. Chapter I
		Coefficient	229
	9.6	Testing Statistical Hypotheses	232
	9.7	Exercises	233
10	Groups and Permutations		237
	10.1	Permutations and Groups	237
	10.2	Permutation Graphs	243
	10.3	Subgroups	244
	10.4	Lagrange's Theorem	249
	10.5	The Alternating Subgroup	254
	10.6	Exercises	259

Index

263

one in finite mathematics, or for any course dealing with non-calculusbased applied mathematics. Calculus itself is not required, and a precalculus course should suffice as a prerequisite; the added mathematical ophistication attained from studying calculus would be useful. The text evolved from a seminar designed to introduce first-year undergraduates with a strong quantitative bent to the possibilities inherent in mathematics. Consequently, a key feature of the course, as well as of the text, is the emphasis on interesting examples.