
brief contents
Part 1 Fundamentals.. 1

1 ■ Java 8, 9, 10, and 11: what’s happening? 3
2 ■ Passing code with behavior parameterization 26
3 ■ Lambda expressions 42

Part 2 Functional-style data processing with streams ... 79
4 ■ Introducing streams 81
5 ■ Working with streams 98
6 ■ Collecting data with streams 134
7 ■ Parallel data processing and performance 172

Part 3 Effective programming with streams
and lambdas..199

8 ■ Collection API enhancements 201
9 ■ Refactoring, testing, and debugging 216

10 ■ Domain-specific languages using lambdas 239

VI BRIEF CONTENTS

Part 4 Everyday Java.. 273
11 ш Using Optional as a better alternative to null 275
12 ■ New Date and Time API 297
13 я Default methods 314
14 ■ The Java Module System 333

Part 5 Enhanced Java concurrency....................................355
15 ■ Concepts behind CompletableFuturc and

reactive programming 357
16 ■ GompletableFuture: composable asynchronous

programming 387
17 • Reactive programming 416

Part 6 Functional programming and future Java

evolution............................. 443
18 ш Thinking functionally 445
19 ■ Functional programming techniques 460
20 ■ Blending OOP and FP: Comparing Java and Scala 485
21 ■ Conclusions and where next for Java 500

contents
preface xix
acknowledgments xxi
about this book xxiii
about the authors xxviii
about the cover illustration xxx

Part 1 Fundamentals ••■••••••••••••••••••••••••••••••••a aaaaaaaaaaaa 1

Java 8, 9, 10, and 11: what’s happening? 3
1.1 So, whaťs the big story? 3
1.2 Why is Java still changing? 6

Java place in the programming language ecosystem 6
Stream processing 8 ■ Passing code to methods with behavior
parameterization 9 ■ Parallelism and shared mutable data 10
Java needs to evolve 11

1.3 Functions in Java 12
Methods and lambdas as first-class citizens 12 m Passing code: an
example 14 9 From passing methods to lambdas 16

1.4 Streams 17
Multithreading is difficult 19

CONTENTS

1.5 Delimit methods and Java modules 21
1.6 Other good ideas from functional programming 23

Passing code with behavior parameterization 26
2.1 Coping with changing requirements 27

First attempt: filtering green apples 28 ■ Second attempt:
parameterizing the color 28 ■ Third attempt: filtering with
every attribute you can think of 29

2.2 Behavior parameterization 30
Fourth attempt: filtering by abstract criteria 31

2.3 Tackling verbosity 35
Anonymom classes 36 • Fifth attempt: ming an anonymous
class 36 ■ Sixth attempt: using a lambda expression 37
Seven th attempt: abstracting over List type 38

2.4 Real-world examples 39
Sorting with a Comparator 39 ■ Execu ting a block of code
with Runnable 40 ■ Returning a result ming Callable 40
GUI event handling 41

Lambda expressions 42
3.1 Lambdas in a nutshell 43
3.2 Where and how to use lambdas 46

Functional interface 46 ■ Function descriptor 48

3.3 Putting lambdas into practice: the execute-around pattern 50
Step 1: Remember behavior parameterization 51 9 Step 2: Use
a functional interface to pass behaviors 51 • Step 3: Execute
a behavior! 52 ■ Step 4: Pass lambdas 52

3.4 Using functional interfaces 53
Predicate 54 • Consumer 54 9 Function 55

3.5 Type checking, type inference, and restrictions 59
Type checking 59 9 Same lambda, different functional
interfaces 61 9 Type inference 63 ■ Using local variables 63

3.6 Method references 64
In a nutshell 65 9 Constructor references 68

3.7 Putting lambdas and method references into practice 70
Step 1: Pass code 71 9 Step 2: Use an anony mous class 71
Step 3: Use lambda expressions 71 9 Step 4: Use method
references 72

CONTENTS ix

3.8 Useful methods to compose lambda expressions 72
Composing Comparators 73 ■ Composing Predicates 73
Composing Fu nctions 74

3.9 Similar ideas from mathematics 76
Integration 76 9 Connecting to Java 8 lambdas 77

Part 2 Functional-style data processing
WITH STREAMS...79

Introducing streams 81
4.1 What are streams? 82
4.2 Getting started with streams 86
4.3 Streams vs. collections 88

Traversable only once 90 ■ External vs. internal iteration 91

4.4 Stream operations 93
Intermediate operations 94 9 Terminal operations 95
Working until streams 95

4.5 Road map 96

Working with streams 98
5.1 Filtering 99

Filtering with a predicate

5.2 Slicing a stream 100
Slicing using a predicate
Skipping elemen ts 103

99 9 Filtering unique elements 100

101 9 Truncating a stream 102

5.3 Mapping 104
Apply ing a function to each element of a stream 104
Ratten ing streams 105

5.4 Finding and matching 108
Checking to see if a predicate matches at least one element 108
Checking to see if a predicate matches all elements 109
Finding an element 109 9 Finding the first element 110

5.5 Reducing 111
Summing the elements 111 9 Maximum and minimum 113

5.6 Putting it all into practice 117
The domain: Traders and Transactions 117 9 Solutions 118

CONTENTS

5.7 Numeric streams 121
Primitive stream specializations 121 ■ Numeric ranges 123
Putting numerical streams into practice: Pythagorean triples 123

5.8 Building streams 126
Streams from values 126 * Strea m from nullable 126
Streams from arrays 127 ■ Streams from files 127
Streams from fu nctions: creating infinite streams! 128

5.9 Overview 132

Collecting data with streams 134
6.1 Collectors in a nutshell 136

Collectors as advanced reductions 136 л Predefined
collectors 137

6.2 Reducing and summarizing 138
Finding maximum and min imu m in a stream of values 138
Summarization 139 ■ Joining Strings HO ■ Generalized
summarization with reduction 141

6.3 Grouping 146
Manipulating grouped elements 147 ■ Multilevel grouping 149
Collecting data in subgroups 150

6.4 Partitioning 154
Advantages of partitioning 155 • Partitioning numbers into
prime and nonprime 156

6.5 The Collector interface 159
Making sense of the methods declared by Collector interface 160
Putting them all together 163

6.6 Developing your own collector for better
performance 165
Divide only by prime numbers 166 • Comparing collectors1
performances 170

Parallel data processing and performance 172
7.1 Parallel streams 173

Turning a sequential stream into a parallel one 174
Measuring stream performan ce 176 ш Using parallel streams
correctly 180 ■ Using parallel streams effectively 182

CONTENTS XI

7.2 The fork/join framework 184
Working with RecursiveTask 184 u Best practices for using the

fork/join framework 188 ш Work stealing 189

7.3 Spliterator 190
The splitting process 191 л Implementing your own
Spliterator 192

Part 3 Effective programming with streams
AND LAMBDAS... 199

Collection API enhancements 201
8.1 Collection factories 202

List factory 203 ■ Set factory 204 ■ Map factories 204

8.2 Working with List and Set 205
removelf 205 ■ replaceAU 206

8.3 Working with Map 207
forEach 207 • Sorting 208 ■ getOrDefault 208
Compute patterns 209 ■ Remove patterns 210
Replacement patterns 211 ■ Merge 211

8.4 Improved ConcurrentHashMap 213
Reduce and Search 213 n Counting 214 ш Set views 214

Refactoring, testing, and debugging 216
9.1 Refactoring for improved readability and flexibility 217

Improving code readability 217 л From anonymous classes to
lambda expressions 217 ш From lambda expressions to method
references 219 * From imperative data processing to Streams 220
Improving code flexibility 221

9.2 Refactoring object-oriented design patterns
with lambdas 223
Strategy 224 ■ Template method 225 ■ Observer 226
Chain of responsibility 229 m Factory 230

9.3 Testing lambdas 232
Testing the behavior of a visible lambda 232 * Focusing on the
behavior of the method using a lambda 233 ■ Pulling complex
lambdas into separate methods 234 ■ Testing high-order
functions 234

CONTENTS

9.4 Debugging 234
Examining the stack trace 235 л Logging infonnation 236

10 Domain-specific languages using lambdas 239
10.1 A specific language for your domain 241

Pros a nd cons of DSLs 242 ■ Different DSL solutions ava ilable
on theßOXI 244

10.2 Small DSLs in modern Java APIs 248
The Stream API seen as a DSL to manipulate collections 249
Collectors as a DSL to aggregate data 250

10.3 Patterns and techniques to create DSLs in Java 252
Method chaining 255 m Using nested functions 257
Function sequencing with lambda expressions 259
Putting it all together 261 ■ Using method references
in a DSL 263

10.4 Real World Java 8 DSL 266
jOOQ 266 ■ Cucumber 267 m Spňng Integration 269

RT 4 Everyday Java 273

Using Optional as a better alternative to null 275
11.1 How do you model the absence of a value? 276

Reducing NullPointerExceptions with defensive checking 277
Problems with null 278 а What are the alternatives to null in
other languages ? 279

11.2 Introducing die Optional class 280
11.3 Patterns for adopting Optionals 281

Creating Optional objects 281 m Extracting and transforming
values from Optionals with map 282 ■ Chaining Optional objects
with flatMap 283 ■ Manipulating a stream of optionals 287
Default actions and unwrapping an Optional 288 ■ Combining
two Optionals 289 ■ Rejecting certain values with filter 290

11.4 Practical examples of using Optional 292
Wrapping a potentially null value in an Optional 292
Exceptions vs. Optional 293 л Piimitive optionals and why
you shouldn't use them 294 ■ Putting it all together 294

CONTENTS хш

New Date and Time API 297
12.1 LocalDate, LocalTimc, LocalDatcTime, Instant, Duration,

and Period 298
Working with LocalDate and LocalTime 299 ■ Combining a date
and a time 3(Ю ■ Instant: a date and time for machines 301
Defining a Duration or a Period 301

12.2 Manipulating, parsing, and formatting dates 303
Working with TemporalAdjusters 305 ■ Printing and parsing
date-time objects 308

12.3 Working with different time zones and calendars 310
Using time zones 310 л Fixed offset from UTC/Greenwich 311
Using alternative calendar systems 311

Default methods 314
13.1 Evolving APIs 317

API version 1 317 л API version 2 318

13.2 Default methods in a nutshell 320
13.3 Usage patterns for default methods 322

Optional methods 322 ■ Multiple inheritance of behavior 323

13.4 Resolution rules 326
Three resolution rules to know 327 ш Most specific default
providing inteif ace wins 327 ш Conflicts and explicit
disambiguation 329 m Diamond problem 330

The Java Module System 333
14.1 The driving force: reasoning about software 334

Separation of concerns 334 ■ Information h iding 334
Java software 335

14.2 Why the Java Module System was designed 336
Modularity limitations 336 ■ Monolithic JDK 337
Comparison with OSCA 338

14.3 Java modules: the big picture 339
14.4 Developing an application with the Java Module

System 340
Setting up an application 340 ■ Fine-grained and coarse-grained,
modularization 342 ■ Java Module System basics 342

XIV CONTENTS

14.5 Working with several modules 343
The exports clause 344 ■ The requires clause 344
Naming 345

14.6 Compiling and packaging 345
14.7 Automatic modules 349
14.8 Module declaration and clauses 350

requires 350 * exports 350 * requires transitive 351
exports to 351 * open and opens 351 * uses and
provides 352

14.9 A bigger example and where to learn more 352

Part 5 Enhanced Java concurrency..........................355
Concepts behind CompletableFuturc and

reactive programming 357
15.1 Evolving Java support for expressing concurrency 360

Threads a nd higher-level abstractions 361 * Executors and thread
pools 362 ■ Other abstractions of threads: ron-neSted with method
calls 364 * What do you want from threads? 366

15.2 Synchronous and asynchronous APIs 366
Future-style API 368 * Reactive-style API 369 * Sleeping
(and other blocking operations) considered harmful 370
Reality check 372 * IIow do exceptions work with
asynchronous APIs? 372

15.3 The box-and-channel model 373
15.4 CompletableFuturc and combinatore for

concurrency 375
15.5 Publish-subscribe and reactive programming 378

Example use for summing two flows 380 * Backpressure 384
A simple form, of real backpressure 384

15.6 Reactive systems vs. reactive programming 385
15.7 Roadmap 386

16 CompletableFuture: composable asynchronous
programming 387

16.1 Simple use of Futures 388
Understanding Futures and their limitations 389 • Using
CompletableFutures to build an asynchronous application 390

CONTENTS

16.2 Implementing an asynchronous API 391
Converting a synchronous method into an asynchronous one 392
Dealing with errors 394

16.3 Making your code nonblocking 396
Parallelizing requests using a parallel Stream 397
Making asynchronous requests with CompletableFutures 397
Looking for the solution that scales better 399 ■ Using a custom
Executor 400

16.4 Pipelining asynchronous tasks 402
Implementing a discount service 403 ■ Using the Discount
service 404 ■ Composing synchronous and asynchronous
operations 405 ■ Combining two CompletableFutures:
dependent and independent 408 ■ Reflecting on Future vs.
CompletableFuture 409 л Using timeouts effectively 410

16.5 Reacting to a CompletableFuture completion 411
Refactoring the best-price finder application 412
Putting it all together 414

16.6 Roadmap 414

Reactive programming 416
17.1 The Reactive Manifesto 417

Reactive at application level 418 л Reactive al system level 420

17.2 Reactive streams and the Flow API 421
Introducing the blow class 421 ■ Creating your first reactive
application 424 ■ Transforming data with a Processor 429
Why doesn 7 Java provide an implementation of the Row APR 431

17.3 Using the reactive library Rxjava 431
Creating and using an Observable 433 ■ Transforming and
combining Observables 437

Part 6 Functional programming and future
^ Java evolution... -

Thinkingfunctionally 445
18.1 Implementing and maintaining systems 446

Shared mutable data 446 л Declarative programming 447
Why functional programming! 448

XVI CONTENTS

18.2 Whaťs functional programming? 449
Functional-style Java 450 ■ Referential transparency 452
Objectroriented vs. functional-style programming 452
Functional style in practice 453

18.3 Recursion vs. iteration 455

Functional programming techniques 460
19.1 Functions everywhere 461

Higher-order functions 461 ■ Currying 463

19.2 Persistent dala structures 464
Destructive updates vs. functional 464 ■ Another example with
Trees 467 ■ Using a functional approach 468

19.3 Lazy evaluation with streams 469
Self-defining stream 470 m Your own lazy list 472

19.4 Pattern matching 476
Visitor design, pattern 477 а Pattem matching to the rescue 478

19.5 Miscellany 481
Caching or memoization 481 я What does “Return the same
objectnmean? 482 ■ Combinators 483

20 Blending OOP and FP: Comparing Java and Scala 485
20.1 Introduction to Scala 486

Hello beer 486 ■ Basic data structures: List, Set, Map, Tuple,
Stream, Option 488

20.2 Functions 493
First-class functions in Scala 493 ■ Anonymous functions
and closures 494 л Currying 496

20.3 Classes and traits 497
1-ess verbosity with Scala classes 497 ■ Scala traits vs. Java
interfaces 498

Behavior parameterization (lambdas and method references) 501
Streams 502 ■ CompletableFuture 502 ■ Optional 503
Row API 503 ■ Default methods 504

21.2 The Java 9 module system 504
21.3 Java 10 local variable type inference 505

CONTENTS xvü

21.4 Whaťs ahead for Java? 507
Declaration-site variance 507 а Pattem matching 507
Richer forms of generics 508 ■ Deeper support, for
immutability 510* Value types 511

21.5 Moving Java forward faster 514
21.6 The final word 515

appendix A Miscellaneous language updates 517
appendix В Miscellaneous library updates 521
appendix C Performing multiple operations in parallel on a stream 529
appendix D Lambdas and JVM bytecode 538

index 543

