Contents

eastered and Evolution	
Preface	vii
Acknowledgments	xiii
Special Sections	xxix
Map of the Maps	ххх

PART 1 THE FACTS OF LIFE

Chapter 1:	Why: Biology by the Numbers	3
Chapter 2:	What and Where: Construction Plans for Cells and Organisms	35
Chapter 3:	When: Stopwatches at Many Scales	87
Chapter 4:	Who: "Bless the Little Beasties"	137

ART 2 LIFE AT REST

Chapter 5:	Mechanical and Chemical Equilibrium in the Living Cell	187
Chapter 6:	Entropy Rules!	237
Chapter 7:	Two-State Systems: From Ion Channels to Cooperative Binding	281
Chapter 8:	Random Walks and the Structure of Macromolecules	311
Chapter 9:	Electrostatics for Salty Solutions	355
Chapter 10:	Beam Theory: Architecture for Cells and Skeletons	383
Chapter 11:	Biological Membranes: Life in Two Dimensions	427

PART 3 LIFE IN MOTION

Chapter 12:	The Mathematics of Water	483
Chapter 13:	A Statistical View of Biological Dynamics	509
Chapter 14:	Life in Crowded and Disordered Environments	543
Chapter 15:	Rate Equations and Dynamics in the Cell	573
Chapter 16:	Dynamics of Molecular Motors	623
Chapter 17:	Biological Electricity and the Hodgkin–Huxley Model	681
Chapter 18:	Light and Life	717

PART 4 THE MEANING OF LIFE

Chapter 19:	Organization of Biological Networks	801
Chapter 20:	Biological Patterns: Order in Space and Time	893
Chapter 21:	Sequences, Specificity, and Evolution	951
Chapter 22:	Whither Physical Biology?	1023
Index		1039

Contents in Detail

Preface	vii
Acknowledgments	xiii
Special Sections	xxix
Map of the Maps	XXX

PART 1 THE FACTS OF LIFE

Chapt	ter 1 Why: Biology by the Numbers	3
1.1	BIOLOGICAL CARTOGRAPHY	3
1.2	PHYSICAL BIOLOGY OF THE CELL	4
	Model Building Requires a Substrate of Biological Facts and Physical (or Chemical) Principles	5
1.3	THE STUFF OF LIFE	5
	Organisms Are Constructed from Four Great Classes of Macromolecules Nucleic Acids and Proteins Are Polymer Languages	6
	with Different Alphabets	7
1.4	MODEL BUILDING IN BIOLOGY Models as Idealizations	9
1.4.1	Biological Stuff Can Be Idealized Using Many	9
	Different Physical Models	11
1.4.2	Cartoons and Models	16
	Biological Cartoons Select Those Features of the	16
	Problem Thought to Be Essential Ouantitative Models Can Be Built by	10
	Mathematicizing the Cartoons	19
1.5		
1.5	QUANTITATIVE MODELS AND THE POWER OF IDEALIZATION	20
1.5.1	On the Springiness of Stuff	21
1.5.2	The Toolbox of Fundamental Physical Models	22
1.5.3	The Unifying Ideas of Biology	23
1.5.4	Mathematical Toolkit The Role of Estimates	25 26
1.5.6	On Being Wrong	29
1.5.7	Rules of Thumb: Biology by the Numbers	30
1.6	SUMMARY AND CONCLUSIONS	32
1.7	FURTHER READING	32
1.8	REFERENCES	33
	Dissecting Membrane Datify advertise control	
-	ter 2 What and Where: Construction	
Plans	s for Cells and Organisms	35
2.1	AN ODE TO E. COLI	35
2.1.1	The Bacterial Standard Ruler	37
	The Bacterium <i>E. coli</i> Will Serve as Our Standard Ruler	37

	Standard Ruler	
2.1.2	Taking the Molecular Census	
	The Cellular Interior Is Highly Crowded, with Mean	
	Spacings Between Molecules That Are Comparable	
	to Molecular Dimensions	
2.1.3	Looking Inside Cells	
2.1.4	Where Does E. coli Fit?	
	Biological Structures Exist Over a Huge Range of	
	Scales	

 2.2.1 Cells: A Rogue's Gallery Cells Come in a Wide Variety of Shapes and Sizes and with a Huge Range of Functions Cells from Humans Have a Huge Diversity of Structure and Function 2.2.2 The Cellular Interior: Organelles 2.2.3 Macromolecular Assemblies: The Whole is Greater than the Sum of the Parts Macromolecular Assemblies: The Whole is Greater than the Sum of the Parts Macromolecular Assemblies Are Arranged in Superstructures 2.2.4 Viruses as Assemblies 2.5.5 The Molecular Architecture of Cells: From Protein Data Bank (PDB) Files to Ribbon Diagrams Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of <i>Dictyostelium discoideum</i> Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organism The Cells of the Nematode Worm, <i>Caenorhabditis Elegans</i>, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Aus Been Charted, Yielding a Cell-by-Cell Picture of the Organism Aus Been Charted, Yielding a Cell-by-Cell Picture of the Organism Aus Been Charted, Yielding a Cell-by-Cell Picture of the Organism Aus Been Charted, Yielding a Cell-by-Cell Picture of the Organism Aus Been Charted, Yielding a Cell-by-Cell Picture of the Organism Aus Been Charted, Yielding a Cell-by-Cell PROBLEMS FURTHER READING REFERENCES 	
Cells Come in a Wide Variety of Shapes and Sizes and with a Huge Range of Functions Cells from Humans Have a Huge Diversity of Structure and Function 2.2.2 The Cellular Interior: Organelles 2.2.3 Macromolecular Assemblies: The Whole is Greater than the Sum of the Parts Macromolecular Assemblies: The Whole is Greater than the Sum of the Parts Macromolecular Assemblies Are Arranged in Superstructures 2.2.4 Viruses as Assemblies 2.2.5 The Molecular Architecture of Cells: From Protein Data Bank (PDB) Files to Ribbon Diagrams Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of Dictyostelium discoideum Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms The Cells Of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES	52
and with a Huge Range of Functions Cells from Humans Have a Huge Diversity of Structure and Function 2.2.2 The Cellular Interior: Organelles 2.3 Macromolecular Assemblies: The Whole is Greater than the Sum of the Parts Macromolecules Come Together to Form Assemblies Helical Motifs Are Seen Repeatedly in Molecular Assemblies Macromolecular Assemblies Are Arranged in Superstructures 2.2.4 Viruses as Assemblies 2.2.5 The Molecular Architecture of Cells: From Protein Data Bank (PDB) Files to Ribbon Diagrams Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of Dictyostelium discoideum Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	52
Cells from Humans Have a Huge Diversity of Structure and Function 2.2.2 The Cellular Interior: Organelles 2.2.3 Macromolecular Assemblies: The Whole is Greater than the Sum of the Parts Macromolecules Come Together to Form Assemblies Helical Motifs Are Seen Repeatedly in Molecular Assemblies Macromolecular Assemblies Are Arranged in Superstructures 2.2.4 Viruses as Assemblies to Ribbon Diagrams Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of <i>Dictyostelium</i> <i>discoideum</i> Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	52
 2.2.2 The Cellular Interior: Organelles 2.2.3 Macromolecular Assemblies: The Whole is Greater than the Sum of the Parts Macromolecules Come Together to Form Assemblies Helical Motifs Are Seen Repeatedly in Molecular Assemblies Macromolecular Assemblies Are Arranged in Superstructures 2.2.4 Viruses as Assemblies 2.2.5 The Molecular Architecture of Cells: From Protein Data Bank (PDB) Files to Ribbon Diagrams Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of Dictyostelium discoideum Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES 	
 2.2.3 Macromolecular Assemblies: The Whole is Greater than the Sum of the Parts Macromolecules Come Together to Form Assemblies Helical Motifs Are Seen Repeatedly in Molecular Assemblies Macromolecular Assemblies Are Arranged in Superstructures 2.2.4 Viruses as Assemblies 2.5 The Molecular Architecture of Cells: From Protein Data Bank (PDB) Files to Ribbon Diagrams Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of Dictyostelium discoidaum Multicellular Organisms Have Many Distinct Communities of Cells 2.3 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3 Multicellular Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES 	57
 than the Sum of the Parts Macromolecules Come Together to Form Assemblies Helical Motifs Are Seen Repeatedly in Molecular Assemblies Macromolecular Assemblies Are Arranged in Superstructures 2.2.4 Viruses as Assemblies 2.2.5 The Molecular Architecture of Cells: From Protein Data Bank (PDB) Files to Ribbon Diagrams Macromolecular Structure IS Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of <i>Dictyostelium discoideum</i> Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis Elegans</i>, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES 	59
 Macromolecules Come Together to Form Assemblies Helical Motifs Are Seen Repeatedly in Molecular Assemblies Macromolecular Assemblies Are Arranged in Superstructures 2.2.4 Viruses as Assemblies 2.5 The Molecular Architecture of Cells: From Protein Data Bank (PDB) Files to Ribbon Diagrams Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 7 ELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of <i>Dictyostelium discoideum</i> Multicellular Organisms Have Many Distinct Communities of Cells Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis Elegans</i>, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Auticellular Conganism Higher-Level Structures Exist as Colonies of Organisms SUMMARY AND CONCLUSIONS PROBLEMS FURTHER READING REFERENCES Chapter 3 When: Stopwatches at Many Scales THE HIERARCHY OF TEMPORAL SCALES 	63
 Helical Motifs Are Seen Repeatedly in Molecular Assemblies Macromolecular Assemblies Are Arranged in Superstructures 2.2.4 Viruses as Assemblies 2.2.5 The Molecular Architecture of Cells: From Protein Data Bank (PDB) Files to Ribbon Diagrams Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.31 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of <i>Dictyostelium</i> <i>discoideum</i> Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i>, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES 	
 Assemblies Macromolecular Assemblies Are Arranged in Superstructures 2.2.4 Viruses as Assemblies 2.2.5 The Molecular Architecture of Cells: From Protein Data Bank (PDB) Files to Ribbon Diagrams Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.31 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of <i>Dictyostelium</i> <i>discoideum</i> Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis Elegans</i>, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES 	63
Macromolecular Assemblies Are Arranged in Superstructures 2.2.4 Viruses as Assemblies 2.2.5 The Molecular Architecture of Cells: From Protein Data Bank (PDB) Files to Ribbon Diagrams Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of <i>Dictyostelium</i> <i>discoideum</i> Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	64
 2.2.4 Viruses as Assemblies 2.2.5 The Molecular Architecture of Cells: From Protein Data Bank (PDB) Files to Ribbon Diagrams Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of <i>Dictyostelium</i> <i>discoideum</i> Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organism The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i>, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES 	
 2.2.5 The Molecular Architecture of Cells: From Protein Data Bank (PDB) Files to Ribbon Diagrams Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of Dictyostelium discoideum Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES 	65
Data Bank (PDB) Files to Ribbon Diagrams Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of Dictyostelium discoideum Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, Caenorhabditis Elegans, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	66
 Macromolecular Structure Is Characterized Fundamentally by Atomic Coordinates Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of Dictyostelium discoideum Multicellular Organisms Have Many Distinct Communities of Cells Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, Caenorhabditis Elegans, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms SUMMARY AND CONCLUSIONS PROBLEMS FURTHER READING REFERENCES THE HIERARCHY OF TEMPORAL SCALES 	69
 Chemical Groups Allow Us to Classify Parts of the Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of Dictyostelium discoideum Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, Caenorhabditis Elegans, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Auve Been Charted, Yielding a Cell-by-Cell Picture of the Organism 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES 	
 Structure of Macromolecules 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of Dictyostelium discoideum Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, Caenorhabditis Elegans, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES 	69
 2.3 TELESCOPING UP IN SCALE: CELLS DON'T GO IT ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of <i>Dictyostelium</i> <i>discoideum</i> Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i>, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales	70
 ALONE 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of <i>Dictyostelium</i> <i>discoideum</i> Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i>, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES 	
 2.3.1 Multicellularity as One of Evolution's Great Inventions Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of <i>Dictyostelium</i> <i>discoideum</i> Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i>, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES 	72
 Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of Dictyostelium discoideum Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, Caenorhabditis Elegans, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms SUMMARY AND CONCLUSIONS PROBLEMS G FURTHER READING REFERENCES Chapter 3 When: Stopwatches at Many Scales THE HIERARCHY OF TEMPORAL SCALES 	73
discoideum Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	73
Multicellular Organisms Have Many Distinct Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	75
Communities of Cells 2.3.2 Cellular Structures from Tissues to Nerve Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	15
Networks One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> Elegans, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 3.1 THE HIERARCHY OF TEMPORAL SCALES	76
One Class of Multicellular Structures is the Epithelial Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	
Sheets Tissues Are Collections of Cells and Extracellular Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, Caenorhabditis Elegans, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 3.1 THE HIERARCHY OF TEMPORAL SCALES	77
Matrix Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	77
Nerve Cells Form Complex, Multicellular Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, Caenorhabditis Elegans, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	
Complexes 2.3.3 Multicellular Organisms Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	77
Cells Differentiate During Development Leading to Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	78
Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i> <i>Elegans</i> , Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	78
The Cells of the Nematode Worm, Caenorhabditis Elegans, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 3.1 THE HIERARCHY OF TEMPORAL SCALES	78
Elegans, Have Been Charted, Yielding a Cell-by-Cell Picture of the Organism Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 3.1 THE HIERARCHY OF TEMPORAL SCALES	10
Higher-Level Structures Exist as Colonies of Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	
Organisms 2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	80
2.4 SUMMARY AND CONCLUSIONS 2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	82
2.5 PROBLEMS 2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 4 3.1 THE HIERARCHY OF TEMPORAL SCALES	-
2.6 FURTHER READING 2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 8 3.1 THE HIERARCHY OF TEMPORAL SCALES	83
2.7 REFERENCES Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	83
Chapter 3 When: Stopwatches at Many Scales 3.1 THE HIERARCHY OF TEMPORAL SCALES	84
Many Scales A 3.1 THE HIERARCHY OF TEMPORAL SCALES	85
Many Scales A 3.1 THE HIERARCHY OF TEMPORAL SCALES	
3.1 THE HIERARCHY OF TEMPORAL SCALES	87
	87
	89
Biological Processes Are Characterized by a Huge	-
Diversity of Time Scales	89
3.1.2 The Evolutionary Stopwatch	95

3.1.3	The Cell Cycle and the Standard Clock The <i>E. coli</i> Cell Cycle Will Serve as Our Standard	99
3.1.4	Stopwatch Three Views of Time in Biology	99 105
3.2	PROCEDURAL TIME	106
3.2.1	The Machines (or Processes) of the Central Dogma The Central Dogma Describes the Processes Whereby the Genetic Information Is Expressed	107
		107
	The Processes of the Central Dogma Are Carried Out by Sophisticated Molecular Machines	108
3.2.2	Clocks and Oscillators	110
3.2.2	Developing Embryos Divide on a Regular Schedule	110
	Dictated by an Internal Clock	111
	Diurnal Clocks Allow Cells and Organisms to Be on	
	Time Everyday	111
3.3	RELATIVE TIME	114
3.3.1	Checkpoints and the Cell Cycle	115
	The Eukaryotic Cell Cycle Consists of Four Phases	115
	Involving Molecular Synthesis and Organization	115
3.3.2	Measuring Relative Time Genetic Networks Are Collections of Genes	117
	Whose Expression Is Interrelated	117
	The Formation of the Bacterial Flagellum Is	
	Intricately Organized in Space and Time	119
3.3.3	Killing the Cell: The Life Cycles of Viruses	120
51515	Viral Life Cycles Include a Series of Self-Assembly	
	Processes	121
3.3.4	The Process of Development	122
3.4	MANIPULATED TIME	125
3.4.1	Chemical Kinetics and Enzyme Turnover	125
3.4.2	Beating the Diffusive Speed Limit	126
	Diffusion Is the Random Motion of Microscopic	
	Particles in	
	Solution	127
	Diffusion Times Depend upon the Length Scale	127
	Diffusive Transport at the Synaptic Junction Is the Dynamical Mechanism for Neuronal Communication	128
	Molecular Motors Move Cargo over Large Distances	120
	in a Directed Way	129
	Membrane-Bound Proteins Transport Molecules	
	from One Side of a Membrane to the Other	130
3.4.3	Beating the Replication Limit	131
3.4.4	Eggs and Spores: Planning for the Next	132
	Generation	132
3.5	SUMMARY AND CONCLUSIONS	133
3.6	PROBLEMS	133
3.7	FURTHER READING	136
3.8	REFERENCES	136
	In sinclot as take another by second like	
Chapt	ter 4 Who: "Bless the Little Beasties"	137
4.1		
	CHOOSING A GRAIN OF SAND	137
	Modern Genetics Began with the Use of Peas as a	
	Modern Genetics Began with the Use of Peas as a Model System	138
4.1.1	Modern Genetics Began with the Use of Peas as a	
	Modern Genetics Began with the Use of Peas as a Model System Biochemistry and Genetics	138
4.1.1 4.2 4.2.1	Modern Genetics Began with the Use of Peas as a Model System Biochemistry and Genetics HEMOGLOBIN AS A MODEL PROTEIN	138 138
4.2	Modern Genetics Began with the Use of Peas as a Model System Biochemistry and Genetics HEMOGLOBIN AS A MODEL PROTEIN Hemoglobin, Receptor-Ligand Binding, and the Other Bohr	138 138
4.2	Modern Genetics Began with the Use of Peas as a Model System Biochemistry and Genetics HEMOGLOBIN AS A MODEL PROTEIN Hemoglobin, Receptor-Ligand Binding, and the Other Bohr The Binding of Oxygen to Hemoglobin Has Served	138 138 143
4.2	Modern Genetics Began with the Use of Peas as a Model System Biochemistry and Genetics HEMOGLOBIN AS A MODEL PROTEIN Hemoglobin, Receptor-Ligand Binding, and the Other Bohr The Binding of Oxygen to Hemoglobin Has Served as a Model System for Ligand-Receptor Interactions	138 138 143 143
4.2	Modern Genetics Began with the Use of Peas as a Model System Biochemistry and Genetics HEMOGLOBIN AS A MODEL PROTEIN Hemoglobin, Receptor-Ligand Binding, and the Other Bohr The Binding of Oxygen to Hemoglobin Has Served as a Model System for Ligand-Receptor Interactions More Generally	138 138 143
4.2	Modern Genetics Began with the Use of Peas as a Model System Biochemistry and Genetics HEMOGLOBIN AS A MODEL PROTEIN Hemoglobin, Receptor-Ligand Binding, and the Other Bohr The Binding of Oxygen to Hemoglobin Has Served as a Model System for Ligand-Receptor Interactions	138 138 143 143
4.2	Modern Genetics Began with the Use of Peas as a Model System Biochemistry and Genetics HEMOGLOBIN AS A MODEL PROTEIN Hemoglobin, Receptor-Ligand Binding, and the Other Bohr The Binding of Oxygen to Hemoglobin Has Served as a Model System for Ligand-Receptor Interactions More Generally Quantitative Analysis of Hemoglobin Is Based upon	138 138 143 143 143
4.2 4.2.1	Modern Genetics Began with the Use of Peas as a Model System Biochemistry and Genetics HEMOGLOBIN AS A MODEL PROTEIN Hemoglobin, Receptor-Ligand Binding, and the Other Bohr The Binding of Oxygen to Hemoglobin Has Served as a Model System for Ligand-Receptor Interactions More Generally Quantitative Analysis of Hemoglobin Is Based upon Measuring the Fractional Occupancy of the Oxygen-Binding Sites as a Function of Oxygen Pressure	138 138 143 143 143 143
4.2	Modern Genetics Began with the Use of Peas as a Model System Biochemistry and Genetics HEMOGLOBIN AS A MODEL PROTEIN Hemoglobin, Receptor-Ligand Binding, and the Other Bohr The Binding of Oxygen to Hemoglobin Has Served as a Model System for Ligand-Receptor Interactions More Generally Quantitative Analysis of Hemoglobin Is Based upon Measuring the Fractional Occupancy of the Oxygen-Binding Sites as a Function of Oxygen Pressure Hemoglobin and the Origins of Structural Biology	138 138 143 143 143
4.2 4.2.1	Modern Genetics Began with the Use of Peas as a Model System Biochemistry and Genetics HEMOGLOBIN AS A MODEL PROTEIN Hemoglobin, Receptor-Ligand Binding, and the Other Bohr The Binding of Oxygen to Hemoglobin Has Served as a Model System for Ligand-Receptor Interactions More Generally Quantitative Analysis of Hemoglobin Is Based upon Measuring the Fractional Occupancy of the Oxygen-Binding Sites as a Function of Oxygen Pressure Hemoglobin and the Origins of Structural Biology The Study of the Mass of Hemoglobin Was Central in	138 138 143 143 143 143 144
4.2 4.2.1	Modern Genetics Began with the Use of Peas as a Model System Biochemistry and Genetics HEMOGLOBIN AS A MODEL PROTEIN Hemoglobin, Receptor-Ligand Binding, and the Other Bohr The Binding of Oxygen to Hemoglobin Has Served as a Model System for Ligand-Receptor Interactions More Generally Quantitative Analysis of Hemoglobin Is Based upon Measuring the Fractional Occupancy of the Oxygen-Binding Sites as a Function of Oxygen Pressure Hemoglobin and the Origins of Structural Biology	138 138 143 143 143 143

	Chrystyral Biology Has Its Desta in the	
	Structural Biology Has Its Roots in the	145
	Determine	145
4.2.3	Tientoground and thereeath inclueis of protector	146
4.2.4	The Rise of Allostery and Cooperativity	146
4.3	BACTERIOPHAGES AND MOLECULAR BIOLOGY	147
4.3.1	Bacteriophages and the Origins of Molecular Biology	148
4.3.1	Bacteriophages Have Sometimes Been Called the	140
	"Hydrogen Atoms of Biology"	148
	Experiments on Phages and Their Bacterial Hosts	140
	Demonstrated That Natural Selection Is Operative in Microscopic Organisms	148
		140
	The Hershey-Chase Experiment Both Confirmed the	
	Nature of Genetic Material and Elucidated One of the	140
	Mechanisms of Viral DNA Entry into Cells	149
	Experiments on Phage T4 Demonstrated the	
	Sequence Hypothesis of Collinearity of DNA and	150
	Proteins	150
	The Triplet Nature of the Genetic Code and DNA	150
	Sequencing Were Carried Out on Phage Systems	150
	Phages Were Instrumental in Elucidating the	
	Existence of mRNA	151
	General Ideas about Gene Regulation Were Learned	1.50
	from the Study of Viruses as a Model System	152
4.3.2	Bacteriophages and Modern Biophysics	153
	Many Single- Molecule Studies of Molecular Motors	
	Have Been Performed on Motors from Bacteriophages	154
4.4	A TALE OF TWO CELLS: E. COLI AS A MODEL SYSTEM	154
		154
4.4.1	Bacteria and Molecular Biology	
4.4.2	E. coli and the Central Dogma	156
	The Hypothesis of Conservative Replication Has	156
	Falsifiable Consequences	156
	Extracts from E. coli Were Used to Perform In Vitro	1.5.7
	Synthesis of DNA, mRNA, and Proteins	157
4.4.3	The lac Operon as the "Hydrogen Atom" of Genetic	
	Circuits	157
	Gene Regulation in <i>E. coli</i> Serves as a Model for	157
	Genetic Circuits in General	157
	The lac Operon Is a Genetic Network That Controls	
	the Production of the Enzymes Responsible for	150
	Digesting the Sugar Lactose	158
4.4.4	Signaling and Motility: The Case of Bacterial	150
	Chemotaxis	159
	E. coli Has Served as a Model System for the	150
	Analysis of Cell Motility	159
4.5	YEAST: FROM BIOCHEMISTRY TO THE CELL CYCLE	161
т. Ј	Yeast Has Served as a Model System Leading to	101
	Insights in Contexts Ranging from Vitalism to the	
	Functioning of Enzymes to Eukaryotic Gene	
	Regulation	161
4.5.1	Yeast and the Rise of Biochemistry	162
4.5.1	Dissecting the Cell Cycle	162
4.5.2	Deciding Which Way Is Up: Yeast and Polarity	164
4.5.4	Dissecting Membrane Traffic	166
4.5.5	Genomics and Proteomics	167
4.6	FLIES AND MODERN BIOLOGY	170
4.6.1	Flies and the Rise of Modern Genetics	170
	Drosophila melanogaster Has Served as a Model	
	System for Studies Ranging from Genetics to	
	Development to the Functioning of the Brain and	
	Even Behavior	170
4.6.2	How the Fly Got His Stripes	171
47		170
4.7	OF MICE AND MEN	173
4.8	THE CASE FOR EXOTICA	174
4.8.1	Specialists and Experts	174
4.8.2	The Squid Giant Axon and Biological Electricity	175
	There Is a Steady-State Potential Difference Across	1.70
	the Membrane of Nerve Cells	176
	Nerve Cells Propagate Electrical Signals and Use	1.00
	Them to Communicate with Each Other	176
4.8.3	Exotica Toolkit	178

XX CONTENTS IN DETAIL

4.9	SUMMARY AND CONCLUSIONS	179
4.10	PROBLEMS	179
4.11	FURTHER READING	181
4.12	REFERENCES	183

PART 2 LIFE AT REST

Chapt	er 5 Mechanical and Chemical	
Equili		187
5.1	ENERGY AND THE LIFE OF CELLS	187
5.1.1	The Interplay of Deterministic and Thermal	
	Forces	189
	Thermal Jostling of Particles Must Be Accounted for in Biological Systems	189
5.1.2	Constructing the Cell: Managing the Mass and	
5.1.2	Energy Budget of the Cell	190
	BIOLOGICAL SYSTEMS AS MINIMIZERS	200
5.2 5.2.1	Equilibrium Models for Out of Equilibrium Systems	200
5.2.1	Equilibrium Models Can Be Used for Nonequilibrium	
	Problems if Certain Processes Happen Much Faster	201
	Than Others	201 202
5.2.2	Proteins in "Equilibrium" Protein Structures are Free-Energy Minimizers	202
5.2.3	Cells in "Equilibrium"	204
5.2.4	Mechanical Equilibrium from a Minimization	
	Perspective	204
	The Mechanical Equilibrium State is Obtained by Minimizing the Potential Energy	204
	Winning the Fotential Energy	
5.3	THE MATHEMATICS OF SUPERLATIVES	209
5.3.1	The Mathematization of Judgement: Functions and	209
	Functionals Functionals Deliver a Number for Every Function	209
	They Are Given	210
5.3.2	The Calculus of Superlatives	211
	Finding the Maximum and Minimum Values of a Function Requires That We Find Where the Slope of	
	the Function Equals Zero	211
5.4	CONFIGURATIONAL ENERGY	214
	In Mechanical Problems, Potential Energy Determines the Equilibrium Structure	214
5.4.1	Hooke's Law: Actin to Lipids	216
	There is a Linear Relation Between Force and	
	Extension of a Beam	216
	The Energy to Deform an Elastic Material is a Quadratic Function of the Strain	217
	Quadratic Function of the Strain	217
5.5	STRUCTURES AS FREE-ENERGY MINIMIZERS	219
	The Entropy is a Measure of the Microscopic	210
5.5.1	Degeneracy of a Macroscopic State Entropy and Hydrophobicity	219
5.5.1	Hydrophobicity Results from Depriving Water	LLL
	Molecules of Some of Their Configurational	8.8
	Entropy	222
	Amino Acids Can Be Classified According to Their Hydrophobicity	224
	When in Water, Hydrocarbon Tails on Lipids Have an	
	Entropy Cost	225
5.5.2	Gibbs and the Calculus of Equilibrium	225
	Thermal and Chemical Equilibrium are Obtained by Maximizing the Entropy	225
5.5.3	Departure from Equilibrium and Fluxes	227
5.5.4	Structure as a Competition	228
	Free Energy Minimization Can Be Thought	
	of as an Alternative Formulation of Entropy Maximization	228
5.5.5	An Ode to ΔG	230
RBE	The Free Energy Reflects a Competition Between	
	Energy and Entropy	230

5.6	SUMMARY AND CONCLUSIONS	231
5.7	APPENDIX: THE EULER-LAGRANGE EQUATIONS,	222
	FINDING THE SUPERLATIVE Finding the Extrema of Functionals Is Carried Out	232
	Using the Calculus of Variations	232
	The Euler-Lagrange Equations Let Us Minimize	
	Functionals by Solving Differential Equations	232
5.8	PROBLEMS	233
5.9	FURTHER READING	235
5.10	REFERENCES	236
Chant	er 6 Entropy Rules!	237
10.7	THE ANALYTICAL ENGINE OF STATISTICAL	231
6.1	MECHANICS	237
	The Probability of Different Microstates Is	
135	Determined by Their Energy	240
6.1.1	A First Look at Ligand-Receptor Binding The Statistical Mechanics of Gene Expression: RNA	241
0.1.2	Polymerase and the Promoter	244
	A Simple Model of Gene Expression Is to Consider	
	the Probability of RNA Polymerase Binding at the Promoter	245
	Most Cellular RNA Polymerase Molecules Are Bound	- 15
	to DNA	245
	The Binding Probability of RNA Polymerase to Its	
	Promoter Is a Simple Function of the Number of Polymerase Molecules and the Binding Energy	247
6.1.3	Classic Derivation of the Boltzmann Distribution	248
	The Boltzmann Distribution Gives the Probability of	
	Microstates for a System in Contact with a Thermal	248
6.1.4	Reservoir Boltzmann Distribution by Counting	250
0.1.4	Different Ways of Partitioning Energy Among	
	Particles Have Different Degeneracies	250
6.1.5	Boltzmann Distribution by Guessing Maximizing the Entropy Corresponds to Making a	253
	Best Guess When Faced with Limited Information	253
	Entropy Maximization Can Be Used as a Tool for	
	Statistical Inference	255
	The Boltzmann Distribution is the Maximum Entropy Distribution in Which the Average Energy is	·
	Prescribed as a Constraint	258
C D		259
6.2 6.2.1	ON BEING IDEAL Average Energy of a Molecule in a Gas	259
0.2.1	The Ideal Gas Entropy Reflects the Freedom to	
ROSED T	Rearrange Molecular Positions and Velocities	259
6.2.2	Free Energy of Dilute Solutions The Chemical Potential of a Dilute Solution Is a	262
	Simple Logarithmic Function of the Concentration	262
6.2.3	Osmotic Pressure as an	
	Entropic Spring Osmotic Pressure Arises from Entropic Effects	264 264
	Viruses, Membrane-Bound Organelles, and Cells	204
	Are Subject to Osmotic Pressure	265
	Osmotic Forces Have Been Used to Measure the	
	Interstrand Interactions of DNA	266
6.3	THE CALCULUS OF EQUILIBRIUM APPLIED: LAW OF	
	MASS ACTION	267
6.3.1	Law of Mass Action and Equilibrium Constants Equilibrium Constants are Determined by Entropy	267
	Maximization	267
	MARIONO ICULSIAN AND AND AND AND AND	-
6.4	APPLICATIONS OF THE CALCULUS OF EQUILIBRIUM	270
6.4.1 6.4.2	A Second Look at Ligand–Receptor Binding Measuring Ligand–Receptor Binding	270
6.4.3	Beyond Simple Ligand-Receptor Binding: The Hill	
	Function	273
6.4.4	ATP Power The Energy Released in ATP Hydrolysis Depends	274
	Upon the Concentrations of Reactants and Products	275

6.5	SUMMARY AND CONCLUSIONS	276
6.6	PROBLEMS	276
6.7	FURTHER READING	278
6.8	REFERENCES	278

9.2.3

upon the pH of the Solution

Salt and Binding

Different Amino Acids Have Different Charge States

Chapter 7 Two-State Systems: From Ion **Channels to Cooperative Binding**

7.1	MACROMOLECULES WITH MULTIPLE STATES	281
7.1.1	The Internal State Variable Idea The State of a Protein or Nucleic Acid Can Be	281
	Characterized Mathematically Using a State	282
7.1.2	Variable Ion Channels as an Example of Internal State	202
7.1.2	Variables	286
	The Open Probability $\langle \sigma \rangle$ of an Ion Channel Can Be	
	Computed Using Statistical Mechanics	287
7.2	STATE VARIABLE DESCRIPTION OF BINDING	289
7.2.1	The Gibbs Distribution: Contact with a Particle Reservoir	289
	The Gibbs Distribution Gives the Probability of	205
	Microstates for a System in Contact with a Thermal	
	and Particle Reservoir	289
7.2.2	Simple Ligand-Receptor Binding Revisited	291
7.2.3	Phosphorylation as an Example of Two Internal State Variables	292
	Phosphorylation Can Change the Energy Balance	LJL
	Between Active and Inactive States	293
	Two-Component Systems Exemplify the Use of	127
	Phosphorylation in Signal Transduction	295
7.2.4	Hemoglobin as a Case Study in Cooperativity	298
	The Binding Affinity of Oxygen for Hemoglobin Depends upon Whether or Not Other Oxygens Are	
	Already Bound	298
	A Toy Model of a Dimeric Hemoglobin (Dimoglobin)	
	Illustrate the Idea of Cooperativity	298
	The Monod-Wyman-Changeux (MWC) Model	200
	Provides a Simple Example of Cooperative Binding	300
	Statistical Models of the Occupancy of Hemoglobin Can Be Written Using Occupation Variables	301
	There is a Logical Progression of Increasingly	501
	Complex Binding Models for Hemoglobin	301
7.3	ION CHANNELS REVISITED: LIGAND-GATED	205
	CHANNELS AND THE MWC MODEL	305
7.4	SUMMARY AND CONCLUSIONS	308
7.5	PROBLEMS	308
7.6	FURTHER READING	310
7.7	REFERENCES	310

Chapter 8 Random Walks and the **Structure of Macromolecules**

8.1	WHAT IS A STRUCTURE: PDB OR R _G ?	311
8.1.1	Deterministic versus Statistical Descriptions of Structure	312
	PDB Files Reflect a Deterministic Description of Macromolecular Structure	312
	Statistical Descriptions of Structure Emphasize Average Size and Shape Rather Than Atomic	
	Coordinates	312
8.2	MACROMOLECULES AS RANDOM WALKS	312
	Random Walk Models of Macromolecules View	
	Them as Rigid Segments Connected by Hinges	312
8.2.1	A Mathematical Stupor In Random Walk Models of Polymers, Every	313
	Macromolecular Configuration Is Equally Probable The Mean Size of a Random Walk Macromolecule	313
	Scales as the Square Root of the Number of Segments, \sqrt{N}	314

	The Probability of a Given Macromolecular State	
	Depends Upon Its Microscopic Degeneracy	315
	Entropy Determines the Elastic Properties of Polymer Chains	316
	The Persistence Length Is a Measure of the Length Scale Over Which a Polymer Remains Roughly	
	Straight	319 321
8.2.2	How Big Is a Genome? The Geography of Chromosomes	321
0.2.5	Genetic Maps and Physical Maps of Chromosomes Describe Different Aspects of Chromosome	
	Structure Different Structural Models of Chromatin Are	322
	Characterized by the Linear Packing Density of DNA	323
	Spatial Organization of Chromosomes Shows Elements of Both Randomness and Order	324
	Chromosomes Are Tethered at Different Locations	325
	Chromosome Territories Have Been Observed in Bacterial Cells	327
	Chromosome Territories in Vibrio cholerae Can Be Explored Using Models of Polymer Confinement and Tethering	328
8.2.4	DNA Looping: From Chromosomes to Gene	
	Regulation	333
	The Lac Repressor Molecule Acts Mechanistically by Forming a Sequestered Loop in DNA Looping of Large DNA Fragments Is Dictated	334
	by the Difficulty of Distant Ends Finding Each Other Chromosome Conformation Capture Reveals	334
	the Geometry of Packing of Entire Genomes in Cells	336
8.3	THE NEW WORLD OF SINGLE-MOLECULE MECHANICS	337
	Single-Molecule Measurement Techniques Lead to Force Spectroscopy	337
8.3.1	Force-Extension Curves: A New Spectroscopy Different Macromolecules Have Different Force	339 339
8.3.2	Signatures When Subjected to Loading Random Walk Models for Force-Extension Curves	340
0.5.2	The Low-Force Regime in Force-Extension Curves Can Be Understood Using the Random Walk Model	340
8.4	PROTEINS AS RANDOM WALKS	344
8.4.1	Compact Random Walks and the Size of Proteins The Compact Nature of Proteins Leads to an	345
8.4.2	Estimate of Their Size Hydrophobic and Polar Residues: The HP Model	345 346
0.4.2	The HP Model Divides Amino Acids into Two	540
	Classes: Hydrophobic and Polar	346
8.4.3	HP Models of Protein Folding	348
8.5	SUMMARY AND CONCLUSIONS	351
8.6	PROBLEMS	351
8.7	FURTHER READING	353
8.8	REFERENCES	222
-	ter 9 Electrostatics for Salty	355
9.1	WATER AS LIFE'S AETHER	355
9.1	Gloos and the Culculus of Economic Lenies and the	
9.2	THE CHEMISTRY OF WATER	358
9.2.1	pH and the Equilibrium Constant Dissociation of Water Molecules Reflects a	358
	Competition Between the Energetics of Binding	P. 272
0.2.2	and the Entropy of Charge Liberation	358
9.2.2	The Charge on DNA and Proteins The Charge State of Biopolymers Depends	355

9.3	ELECTROSTATICS FOR SALTY SOLUTIONS	360
9.3.1	An Electrostatics Primer A Charge Distribution Produces an Electric Field	361
	Throughout Space	362
	The Flux of the Electric Field Measures the Density of Electric Field Lines	363
	The Electrostatic Potential Is an Alternative Basis for Describing the Electrical State of a System	364
	There Is an Energy Cost Associated With Assembling a Collection of Charges	367
	The Energy to Liberate lons from Molecules Can	200
9.3.2	Be Comparable to the Thermal Energy The Charged Life of a Protein	368 369
9.3.3	The Notion of Screening: Electrostatics in Salty	270
	Solutions Ions in Solution Are Spatially Arranged to Shield	370
	Charged Molecules Such as DNA	370
	The Size of the Screening Cloud Is Determined by a Balance of Energy and Entropy of the	
	Surrounding lons	371
9.3.4	The Poisson-Boltzmann Equation The Distribution of Screening Ions Can Be Found	374
	by Minimizing the Free Energy	374
	The Screening Charge Decays Exponentially Around Macromolecules in Solution	376
9.3.5	Viruses as Charged Spheres	377
9.4	SUMMARY AND CONCLUSION	379
9.5	PROBLEMS	380
9.6 9.7	FURTHER READING REFERENCES	382 382
9.7	REFERENCES	502
Chap	ter 10 Beam Theory: Architecture	
for Co	ells and Skeletons	383
10.1	BEAMS ARE EVERYWHERE: FROM FLAGELLA TO THE CYTOSKELETON	383
	One-Dimensional Structural Elements Are the	
	Basis of Much of Macromolecular and Cellular Architecture	383
10.2	GEOMETRY AND ENERGETICS OF BEAM	
	DEFORMATION	385
10.2.1	Stretch, Bend, and Twist Beam Deformations Result in Stretching, Bending,	385
	and Twisting	385
	A Bent Beam Can Be Analyzed as a Collection of Stretched Beams	385
	The Energy Cost to Deform a Beam Is a Quadratic	207
10.2.2	Function of the Strain Beam Theory and the Persistence Length: Stiffness	387
	is Relative	389
	Thermal Fluctuations Tend to Randomize the Orientation of Biological Polymers	389
	The Persistence Length Is the Length Over Which a Polymer Is Roughly Rigid	390
	The Persistence Length Characterizes the	390
	Correlations in the Tangent Vectors at Different	200
	Positions Along the Polymer	390
10.2.3		390 391 392

 The Worm-Like Chain Model Accounts for Both	
The worm-like chain woder Accounts for both	
the Elastic Energy and Entropy of Polymer	
Chains	

10.3	THE MECHANICS OF TRANSCRIPTIONAL	
	REGULATION: DNA LOOPING REDUX	
10.3.1	The lac Operon and Other Looping Systems	
	Transcriptional Regulation Can Be Effected	
	by DNA Looping	
10.3.2	Energetics of DNA Looping	

	Energeties of Drive Ecoping	
10.3.3	Putting It All Together: The J-Factor	

10.4	DNA PACKING: FROM VIRUSES TO EUKARYOTES	398
	The Packing of DNA in Viruses and Cells Requires	
	Enormous Volume Compaction	398
10.4.1	The Problem of Viral DNA Packing	400
	Structural Biologists Have Determined the Structure	
	of Many Parts in the Viral Parts List	400
	The Packing of DNA in Viruses Results in a	
	Free-Energy Penalty	402
	A Simple Model of DNA Packing in Viruses Uses the	
	Elastic Energy of Circular Hoops	403
	DNA Self-Interactions Are also Important in	1991
	Establishing the Free Energy Associated with DNA	
	Packing in Viruses	404
	DNA Packing in Viruses Is a Competition Between	101
	Elastic and Interaction Energies	406
10.4.2	Constructing the Nucleosome	407
10.4.2	Nucleosome Formation Involves Both Elastic	407
	Deformation and Interactions Between Histories	
	and DNA	408
10.4.3	Equilibrium Accessibility of Nucleosomal DNA	409
10.4.5	The Equilibrium Accessibility of Nucleosofial DNA	409
	Nucleosome Depends upon How Far They Are	
	from the Unwrapped Ends	409
	from the onwrapped Ends	409
10.5	THE CYTOSKELETON AND BEAM THEORY	413
10.5	THE CYTOSKELETON AND BEAM THEORY	413
10.5	Eukaryotic Cells Are Threaded by Networks	
	Eukaryotic Cells Are Threaded by Networks of Filaments	413
10.5 10.5,1	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective	
	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the	413 414
10.5.1	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton	413 414 416
	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments	413 414
10.5.1	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection	413 414 416 416
10.5.1 10.5.2	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection of Elastic Beams	413 414 416 416 416
10.5.1	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection of Elastic Beams Cytoskeletal Buckling	413 414 416 416 416 416 419
10.5.1 10.5.2 10.5.3	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection of Elastic Beams Cytoskeletal Buckling A Beam Subject to a Large Enough Force Will Buckle	413 414 416 416 416 416 419 419
10.5.1 10.5.2	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection of Elastic Beams Cytoskeletal Buckling A Beam Subject to a Large Enough Force Will Buckle Estimate of the Buckling Force	413 414 416 416 416 416 419
10.5.1 10.5.2 10.5.3	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection of Elastic Beams Cytoskeletal Buckling A Beam Subject to a Large Enough Force Will Buckle Estimate of the Buckling Force Beam Buckling Occurs at Smaller Forces for Longer	413 414 416 416 416 419 419 420
10.5.1 10.5.2 10.5.3	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection of Elastic Beams Cytoskeletal Buckling A Beam Subject to a Large Enough Force Will Buckle Estimate of the Buckling Force	413 414 416 416 416 416 419 419
10.5.1 10.5.2 10.5.3 10.5.4	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection of Elastic Beams Cytoskeletal Buckling A Beam Subject to a Large Enough Force Will Buckle Estimate of the Buckling Force Beam Buckling Occurs at Smaller Forces for Longer Beams	413 414 416 416 416 419 419 420 420
10.5.1 10.5.2 10.5.3 10.5.4 10.6	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection of Elastic Beams Cytoskeletal Buckling A Beam Subject to a Large Enough Force Will Buckle Estimate of the Buckling Force Beam Buckling Occurs at Smaller Forces for Longer Beams SUMMARY AND CONCLUSIONS	413 414 416 416 416 419 419 420
10.5.1 10.5.2 10.5.3 10.5.4	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection of Elastic Beams Cytoskeletal Buckling A Beam Subject to a Large Enough Force Will Buckle Estimate of the Buckling Force Beam Buckling Occurs at Smaller Forces for Longer Beams SUMMARY AND CONCLUSIONS APPENDIX: THE MATHEMATICS OF THE WORM-LIKE	413 414 416 416 416 419 419 420 420 421
10.5.1 10.5.2 10.5.3 10.5.4 10.6 10.7	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection of Elastic Beams Cytoskeletal Buckling A Beam Subject to a Large Enough Force Will Buckle Estimate of the Buckling Force Beam Buckling Occurs at Smaller Forces for Longer Beams SUMMARY AND CONCLUSIONS APPENDIX: THE MATHEMATICS OF THE WORM-LIKE CHAIN	413 414 416 416 416 419 419 420 420 420 421 421
10.5.1 10.5.2 10.5.3 10.5.4 10.6 10.7 10.8	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection of Elastic Beams Cytoskeletal Buckling A Beam Subject to a Large Enough Force Will Buckle Estimate of the Buckling Force Beam Buckling Occurs at Smaller Forces for Longer Beams SUMMARY AND CONCLUSIONS APPENDIX: THE MATHEMATICS OF THE WORM-LIKE CHAIN PROBLEMS	413 414 416 416 416 419 419 420 420 421 421 421
10.5.1 10.5.2 10.5.3 10.5.4 10.6 10.7	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection of Elastic Beams Cytoskeletal Buckling A Beam Subject to a Large Enough Force Will Buckle Estimate of the Buckling Force Beam Buckling Occurs at Smaller Forces for Longer Beams SUMMARY AND CONCLUSIONS APPENDIX: THE MATHEMATICS OF THE WORM-LIKE CHAIN	413 414 416 416 416 419 419 420 420 420 421 421
10.5.1 10.5.2 10.5.3 10.5.4 10.6 10.7 10.8	Eukaryotic Cells Are Threaded by Networks of Filaments The Cellular Interior: A Structural Perspective Prokaryotic Cells Have Proteins Analogous to the Eukaryotic Cytoskeleton Stiffness of Cytoskeletal Filaments The Cytoskeleton Can Be Viewed as a Collection of Elastic Beams Cytoskeletal Buckling A Beam Subject to a Large Enough Force Will Buckle Estimate of the Buckling Force Beam Buckling Occurs at Smaller Forces for Longer Beams SUMMARY AND CONCLUSIONS APPENDIX: THE MATHEMATICS OF THE WORM-LIKE CHAIN PROBLEMS	413 414 416 416 416 419 419 420 420 421 421 421

Chapter 11 Biological Membranes: Life in Two Dimensions

11.1	THE NATURE OF BIOLOGICAL MEMBRANES	427
11.1.1	Cells and Membranes	427
	Cells and Their Organelles Are Bound by Complex	
	Membranes	427
	Electron Microscopy Provides a Window on Cellular	
	Membrane Structures	429
11.1.2	The Chemistry and Shape of Lipids	431
11.1.2	Membranes Are Built from a Variety of Molecules	451
	That Have an Ambivalent Relationship with Water	431
	The Shapes of Lipid Molecules Can Induce	131
	Spontaneous Curvature on Membranes	436
11 1 2		436
11.1.3	The Liveliness of Membranes	
	Membrane Proteins Shuttle Mass Across Membranes	437
	Membrane Proteins Communicate Information	
	Across Membranes	439
	Specialized Membrane Proteins Generate ATP	439
	Membrane Proteins Can Be Reconstituted in Vesicles	439
11.2	ON THE SPRINGINESS OF MEMBRANES	440
11.2.1	An Interlude on Membrane Geometry	440
	Membrane Stretching Geometry Can Be Described	
	by a Simple Area Function	441
	Membrane Bending Geometry Can Be Described by	
	a Simple Height Function, $h(x, y)$	441
	a simple megne i anectori, n(x, y)	

	Membrane Compression Geometry Can Be Described by a Simple Thickness Function, $w(x,y)$ Membrane Shearing Can Be Described by an Angle	444
	Variable, θ	444
11.2.2	Free Energy of Membrane Deformation There Is a Free-Energy Penalty Associated with	445
	Changing the Area of a Lipid Bilayer There Is a Free-Energy Penalty Associated with	445
	Bending a Lipid Bilayer	446
	There Is a Free-Energy Penalty for Changing the Thickness of a Lipid Bilayer	446
	There Is an Energy Cost Associated with the Gaussian Curvature	447
11.3	STRUCTURE, ENERGETICS, AND FUNCTION OF	
	VESICLES	448
11.3.1	Measuring Membrane Stiffness Membrane Elastic Properties Can Be Measured by	448 448
93.	Stretching Vesicles	440
11.3.2	Membrane Pulling	450
11.3.3	Vesicles in Cells Vesicles Are Used for a Variety of Cellular Transport Processes	453
	There Is a Fixed Free-Energy Cost Associated with	
	Spherical Vesicles of All Sizes	455
	Vesicle Formation Is Assisted by Budding Proteins There Is an Energy Cost to Disassemble Coated	456
	Vesicles	458
11.4	FUSION AND FISSION	458
11.4.1	Pinching Vesicles: The Story of Dynamin	459
11.5	MEMBRANES AND SHAPE	462
11.5.1	The Shapes of Organelles	462
	The Surface Area of Membranes Due to Pleating Is So Large That Organelles Can Have Far More Area	153
	than the Plasma Membrane	463
11.5.2	The Shapes of Cells The Equilibrium Shapes of Red Blood Cells Can Be	465
	Found by Minimizing the Free Energy	466
11.6	THE ACTIVE MEMBRANE	467
11.6.1	Mechanosensitive Ion Channels and Membrane	
	Elasticity Mechanosensitive Ion Channels Respond to	467
194	Membrane Tension	467
11.6.2	Elastic Deformations of Membranes Produced by Proteins	468
	Proteins Induce Elastic Deformations in the	
	Surrounding Membrane	468
	Protein-Induced Membrane Bending Has an	160
	Associated Free-Energy Cost	469 470
11.6.3	Membrane Deformations Can Be Obtained by	470
	Minimizing the Membrane Free Energy	470
	The Membrane Surrounding a Channel Protein Produces a Line Tension	472
11.7	SUMMARY AND CONCLUSIONS	475
11.8	PROBLEMS	476
11.9	FURTHER READING	479
11.10	REFERENCES	479
11.10	REFERENCES	

PART 3 LIFE IN MOTION 481

Chapter 12 The Mathematics of Water48312.1PUTTING WATER IN ITS PLACE48312.2HYDRODYNAMICS OF WATER AND OTHER FLUIDS484

12.2.1	Water as a Continuum	404
	Though Fluids Are Composed of Molecules It Is	484
	Possible to Treat Them as a Continuous Medium	485
12.2.2	What Can Newton Tell Us?	485
	Gradients in Fluid Velocity Lead to Shear Forces	485
12.2.3	F = ma for Fluids	480
12.2.4	The Newtonian Fluid and the Navier-Stokes	490
	Equations The Velocity of Fluids at Surfaces Is Zero	491
	The velocity of Fluids at Surfaces is Zero	431
12.3	THE RIVER WITHIN: FLUID DYNAMICS OF BLOOD	491
12.3.1	Boats in the River: Leukocyte Rolling and	
12.5.1	Adhesion	493
	Autosion	
12.4	THE LOW REYNOLDS NUMBER WORLD	495
12.4.1	Stokes Flow: Consider a Spherical Bacterium	495
12.4.2	Stokes Drag in Single-Molecule Experiments	498
	Stokes Drag Is Irrelevant for Optical Tweezers	
	Experiments	498
12.4.3	Dissipative Time Scales and the Reynolds	
	Number	499
12.4.4	Fish Gotta Swim, Birds Gotta Fly, and Bacteria Gotta	F00
	Swim Too	500
	Reciprocal Deformation of the Swimmer's Body	
	Does Not Lead to Net Motion at Low Reynolds Number	502
10 4 5	Centrifugation and Sedimentation: Spin It Down	502
12.4.5	Centrifugation and Sedimentation. Spin it Down	502
12.5	SUMMARY AND CONCLUSIONS	504
12.6	PROBLEMS	505
12.7	FURTHER READING	507
12.8	REFERENCES	507
12.0	REFERENCES	501

Chapter 13 A Statistical View of Biological Dynamics

13.1	DIFFUSION IN THE CELL	509
13.1.1	Active versus russive manspore	510
13.1.2	Biological Distances Measured in Diffusion Times	511
	The Time It Takes a Diffusing Molecule to Travel a Distance <i>L</i> Grows as the Square	
	of the Distance	512
	Diffusion Is Not Effective Over Large Cellular	
	Distances	512
13.1.3	Random Walk Redux	514
286		
13.2	CONCENTRATION FIELDS AND DIFFUSIVE DYNAMICS Fick's Law Tells Us How Mass Transport Currents	515
	Arise as a Result of Concentration Gradients The Diffusion Equation Results from Fick's Law and	517
	Conservation of Mass	518
13.2.1	Diffusion by Summing Over Microtrajectories	518
13.2.2	Solutions and Properties of the Diffusion Equation Concentration Profiles Broaden Over Time in a Very	524
	Precise Way	524
13.2.3	FRAP and FCS	525
13.2.4	Drunks on a Hill: The Smoluchowski Equation	529
13.2.5	The Einstein Relation	530
13.2.5	The Emstern Relation	
13.3	DIFFUSION TO CAPTURE	532
13.3.1	Modeling the Cell Signaling Problem	532
	Perfect Receptors Result in a Rate of Uptake $4\pi Dc_0 a$	533
	A Distribution of Receptors Is Almost as Good as a	
	Perfectly Absorbing Sphere	534
1222	Real Receptors Are Not Always Uniformly Distributed	536
13.3.2	A "Universal" Rate for Diffusion-Limited Chemical Reactions	537
13.4	SUMMARY AND CONCLUSIONS	538
		539
13.5	PROBLEMS	555

13.6	FURTHER READING	540
13.7	REFERENCES	540
Chapt	er 14 Life in Crowded and	
	dered Environments	543
14.1	CROWDING, LINKAGE, AND ENTANGLEMENT	543
14.1.1	The Cell Is Crowded	544
14.1.2	Macromolecular Networks: The Cytoskeleton	
	and Beyond	545 546
14.1.3	Crowding on Membranes Consequences of Crowding	540
14.1.4	Crowding Alters Biochemical Equilibria	548
	Crowding Alters the Kinetics within Cells	548
	COUNTRELATING COUNTER FUNCTION	
14.2	EQUILIBRIA IN CROWDED ENVIRONMENTS	550
14.2.1	Crowding and Binding Lattice Models of Solution Provide a Simple	550
	Picture of the Role of Crowding in Biochemical	
	Equilibria	550
14.2.2	Osmotic Pressures in Crowded Solutions	552
	Osmotic Pressure Reveals Crowding Effects	552
14.2.3	Depletion Forces: Order from Disorder The Close Approach of Large Particles Excludes	554
	Smaller Particles Between Them, Resulting in an	
	Entropic Force	554
	Depletion Forces Can Induce Entropic Ordering!	559
14.2.4	Excluded Volume and Polymers	559
	Excluded Volume Leads to an Effective Repulsion Between Molecules	559
	Self-avoidance Between the Monomers of a Polymer	223
	Leads to Polymer Swelling	561
14.2.5	Case Study in Crowding: How to Make a Helix	563
14.2.6	Crowding at Membranes	565
14.3	CROWDED DYNAMICS	566
14.3.1	Crowding and Reaction Rates	566
1 Hom	Enzymatic Reactions in Cells Can Proceed Faster	500
	than the Diffusion Limit Using Substrate	
	Channeling	566
1422	Protein Folding Is Facilitated by Chaperones	567
14.3.2	Diffusion in Crowded Environments	567
14.4	SUMMARY AND CONCLUSIONS	569
14.5	PROBLEMS	569
14.6	FURTHER READING	570
14.7	REFERENCES	571
Chapt	er 15 Rate Equations and	
	mics in the Cell	573
15.1	BIOLOGICAL STATISTICAL DYNAMICS: A FIRST	
13.1	LOOK	573
15.1.1	Cells as Chemical Factories	574
15.1.2	Dynamics of the Cytoskeleton	575
15.2		F 70
15.2.1	A CHEMICAL PICTURE OF BIOLOGICAL DYNAMICS The Rate Equation Paradigm	579 579
13.2.1	Chemical Concentrations Vary in Both Space and	379
	Time	580
	Rate Equations Describe the Time Evolution of	
15.2.2	Concentrations	580
15.2.2	All Good Things Must End	581
	Macromolecular Decay Can Be Described by a Simple, First-Order Differential Equation	581
15.2.3	A Single-Molecule View of Degradation: Statistical	501
	Mechanics Over Trajectories	582
	Molecules Fall Apart with a Characteristic Lifetime	582
	Decay Processes Can Be Described with Two-State	
	Trajectories	583

	Decay of One Species Corresponds to Growth in the	
	Number of a Second Species	585
15.2,4	Bimolecular Reactions Chemical Reactions Can Increase the Concentration	586
	of a Given Species	586
	Equilibrium Constants Have a Dynamical	500
	Interpretation in Terms of Reaction Rates	588
15.2.5	Dynamics of Ion Channels as a Case Study	589
	Rate Equations for Ion Channels Characterize the	500
15.2.6	Time Evolution of the Open and Closed Probability Rapid Equilibrium	590 591
15.2.7	Michaelis–Menten and Enzyme Kinetics	596
		550
15.3	THE CYTOSKELETON IS ALWAYS UNDER	500
15.3.1	CONSTRUCTION - The Eukaryotic Cytoskeleton	599 599
15.5.1	The Cytoskeleton Is a Dynamical Structure That Is	299
	Always Under Construction	599
15.3.2	The Curious Case of the Bacterial Cytoskeleton	600
15.4	SIMPLE MODELS OF CYTOSKELETAL POLYMERIZATION	602
13.4	The Dynamics of Polymerization Can Involve Many	002
	Distinct Physical and Chemical Effects	603
15.4.1	The Equilibrium Polymer	604
	Equilibrium Models of Cytoskeletal Filaments	
	Describe the Distribution of Polymer Lengths for	CO.4
	Simple Polymers An Equilibrium Polymer Fluctuates in Time	604 606
15.4.2	Rate Equation Description of Cytoskeletal	000
13.1.2	Polymerization	609
	Polymerization Reactions Can Be Described by Rate	
	Equations	609
	The Time Evolution of the Probability Distribution $P_n(t)$ Can Be Written Using a Rate Equation	610
	Rates of Addition and Removal of Monomers Are	010
	Often Different on the Two Ends of Cytoskeletal	
	Filaments	612
15.4.3	Nucleotide Hydrolysis and Cytoskeletal	
	Polymerization ATP Hydrolysis Sculpts the Molecular Interface,	614
	Resulting in Distinct Rates at the Ends of	
	Cytoskeletal Filaments	614
15.4.4	Dynamic Instability: A Toy Model of the Cap	615
	A Toy Model of Dynamic Instability Assumes That	
	Catastrophe Occurs When Hydrolyzed Nucleotides Are Present at the Growth Front	616
	Are tresent at the growth front	010
15.5	SUMMARY AND CONCLUSIONS	618
15.6	PROBLEMS	619
15.7	FURTHER READING	621
15.8	REFERENCES	621
Chant	an 16 Dynamics of Melagular	
Motor	er 16 Dynamics of Molecular	~~~
		623
16.1	THE DYNAMICS OF MOLECULAR MOTORS: LIFE IN THE NOISY LANE	623
16.1.1	Translational Motors: Beating the Diffusive Speed	025
10.1.1	Limit	625
	The Motion of Eukaryotic Cilia and Flagella Is Driven	
	by Translational Motors	628
1612	Muscle Contraction Is Mediated by Myosin Motors	630
16.1.2	Rotary Motors Polymerization Motors: Pushing by Growing	634 637
16.1.4	Translocation Motors: Pushing by Pulling	638
16.2	RECTIFIED BROWNIAN MOTION AND MOLECULAR MOTORS	620
16.2.1	The Random Walk Yet Again	639 640
10.2.1	Molecular Motors Can Be Thought of as Random	040
	Walkers	640

16.2.2 The One-State Model	641
The Dynamics of a Molecular Motor Can Be Written Using a Master Equation	642
The Driven Diffusion Equation Can Be Transformed into an Ordinary Diffusion Equation	644
16.2.3 Motor Stepping from a Free-Energy Perspective 16.2.4 The Two-State Model	647 651
The Dynamics of a Two-State Motor Is Described by Two Coupled Rate Equations	651
Internal States Reveal Themselves in the Form	654
of the Waiting Time Distribution 16.2.5 More General Motor Models	656
16.2.5 More General Motor Models 16.2.6 Coordination of Motor Protein Activity	658
16.2.7 Rotary Motors	660
16.3 POLYMERIZATION AND TRANSLOCATION AS	663
MOTOR ACTION 16.3.1 The Polymerization Ratchet	663
The Polymerization Ratchet Is Based on a	
Polymerization Reaction That Is Maintained Out of Equilibrium	666
The Polymerization Ratchet Force-Velocity Can Be	
Obtained by Solving a Driven Diffusion Equation	668 670
16.3.2 Force Generation by Growth Polymerization Forces Can Be Measured Directly	670
Polymerization Forces Are Used to Center Cellular	0.0
Structures	672
16.3.3 The Translocation Ratchet	673
Protein Binding Can Speed Up Translocation through a Ratcheting Mechanism	674
The Translocation Time Can Be Estimated by Solving a Driven Diffusion Equation	676
16.4 SUMMARY AND CONCLUSIONS	677
16.5 PROBLEMS	677
16.6 FURTHER READING	679
16.7 REFERENCES	679
Chapter 17 Biological Electricity	c 0 1
and the Hodgkin-Huxley Model	681
17.1 THE ROLE OF ELECTRICITY IN CELLS	681
17.2 THE CHARGE STATE OF THE CELL	682
17.2.1 The Electrical Status of Cells and Their Membranes 17.2.2 Electrochemical Equilibrium and the Nernst Equation	682 n 683
Ion Concentration Differences Across Membranes	683
Lead to Potential Differences	005
17.3 MEMBRANE PERMEABILITY: PUMPS AND CHANNELS	685
A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World	685
Signals in Cells Are Often Mediated by the Presence	e
of Electrical Spikes Called Action Potentials	686 688
1721 Les Channels and Mambrana Darmashility	000
17.3.1 Ion Channels and Membrane Permeability	
Ion Permeability Across Membranes Is Mediated by Ion Channels	688
Ion Permeability Across Membranes Is Mediated by Ion Channels A Simple Two-State Model Can Describe Many	688 689
Ion Permeability Across Membranes Is Mediated by Ion Channels	

17.4	THE ACTION POTENTIAL
17.4.1	Membrane Depolarization: The Membrane as a Bistable Switch
	Coordinated Muscle Contraction Depends Upon Membrane Depolarization
	A Patch of Cell Membrane Can Be Modeled as an Electrical Circuit
	The Difference Between the Membrane Potential and the Nernst Potential Leads to an Ionic Current Across the Cell Membrane

	Voltage-Gated Channels Result in a Nonlinear Current-Voltage Relation for the Cell Membrane A Patch of Membrane Acts as a Bistable Switch	699 700
	The Dynamics of Voltage Relaxation Can Be Modeled Using an <i>RC</i> Circuit	702
1712	The Cable Equation	703
17.4.2	Depolarization Waves	705
17.7.5	Waves of Membrane Depolarization Rely on	
	Sodium Channels Switching into the Open State	705
17.4.4	Spikes	710
17.4.5	Hodgkin-Huxley and Membrane Transport	712
	Inactivation of Sodium Channels Leads to Propagating Spikes	712
	Propagating spikes	112
17.5	SUMMARY AND CONCLUSIONS	714
17.6	PROBLEMS	714
17.7	FURTHER READING	715
17.8	REFERENCES	715
17.0	REI EREIVEES	
Chapt	er 18 Light and Life	717
18.1	INTRODUCTION	718
	PHOTOSYNTHESIS	719
18.2	Organisms From All Three of the Great Domains	
	of Life Perform Photosynthesis	720
18.2.1	Quantum Mechanics for Biology	724
10.2.1	Quantum Mechanical Kinematics Describes	
	States of the System in Terms of Wave Functions	725
	Quantum Mechanical Observables Are Represented	
	by Operators	728
	The Time Evolution of Quantum States Can Be	729
	Determined Using the Schrödinger Equation	729
18.2.2	The Particle-in-a-Box Model Solutions for the Box of Finite Depth Do Not Vanish	
	at the Box Edges	731
18.2.3	Exciting Electrons With Light	733
10.2.5	Absorption Wavelengths Depend Upon Molecular	
	Size and Shape	735
18.2.4	Moving Electrons From Hither to Yon	737
	Excited Electrons Can Suffer Multiple Fates	737
	Electron Transfer in Photosynthesis Proceeds by	739
	Tunneling Electron Transfer Between Donor and Acceptor Is	155
	Gated by Fluctuations of the Environment	745
	Resonant Transfer Processes in the Antenna	
	Complex Efficiently Deliver Energy to the Reaction	- 8.A.T
	Center	747
18.2.5	Bioenergetics of Photosynthesis	748
	Electrons Are Transferred from Donors to Accepto	rs 748
	Within and Around the Cell Membrane Water, Water Everywhere, and Not an Electron to	740
	Drink	750
	Charge Separation across Membranes Results in a	
	Proton-Motive Force	751
18.2.6		752
18.2.7		757
18.2.8	Photosynthesis in Perspective	758
18.3	THE VISION THING	759
18.3.1	Bacterial "Vision"	760
18.3.2		
	Light	763
18.3.3	Animal Vision	763
	There Is a Simple Relationship between Eye	765
	Geometry and Resolution The Resolution of Insect Eyes Is Governed by	105
	Both the Number of Ommatidia and Diffraction	
	Effects	768
	The Light-Driven Conformational Change of Retin	al
	Underlies Animal Vision	769
	Information from Photon Detection Is Amplified	
	by a Signal Transduction Cascade in the	773
	Photoreceptor Cell	113

xxvi CONTENTS IN DETAIL

The Vertebrate Visual System Is Capable of	776
Sex, Death, and Quantum Mechanics	781
to Make Light	784
SUMMARY AND CONCLUSIONS	785
APPENDIX: SIMPLE MODEL OF ELECTRON TUNNELING	785
PROBLEMS	793
FURTHER READING	795
REFERENCES	796
	Detecting Single Photons Sex, Death, and Quantum Mechanics Let There Be Light: Chemical Reactions Can Be Used to Make Light SUMMARY AND CONCLUSIONS APPENDIX: SIMPLE MODEL OF ELECTRON TUNNELING PROBLEMS FURTHER READING

PART 4 THE MEANING OF LIFE 799

Chap	ter 19 Organization of Biological	
Netwo	orks	801
19.1	CHEMICAL AND INFORMATIONAL ORGANIZATION	801
	Many Chemical Reactions in the Cell are Linked in	
	Complex Networks	801
	Genetic Networks Describe the Linkages Between Different Genes and Their Products	802
	Developmental Decisions Are Made by Regulating Genes	802
	Gene Expression Is Measured Quantitatively in Terms of How Much, When, and Where	804
19.2	GENETIC NETWORKS: DOING THE RIGHT THING AT	
	THE RIGHT TIME Promoter Occupancy Is Dictated by the Presence	807
	of Regulatory Proteins Called Transcription	
	Factors	808
19.2.1	The Molecular Implementation of Regulation:	000
	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That	808
	Implement Negative Control	808
	Activators Are the Proteins That Implement Positive Control	809
	Genes Can Be Regulated During Processes Other	
1000	Than Transcription	809
19.2.2	The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins	810 810
	The Regulation Factor Dictates How the Bare RNA	010
	Polymerase Binding Probability Is Altered by	
	Transcription Factors	812
	Activator Bypass Experiments Show That Activators Work by Recruitment	813
	Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter	814
19.2.3	Transcriptional Regulation by the Numbers: Binding	
	Energies and Equilibrium Constants	819
	Equilibrium Constants Can Be Used To Determine	
19.2.4	Regulation Factors	819
19.2.4	A Simple Statistical Mechanical Model of Positive and Negative Regulation	820
19.2.5	The <i>lac</i> Operon	822
	The lac Operon Has Features of Both Negative and	
	Positive Regulation	822
	The Free Energy of DNA Looping Affects the Repression of the <i>lac</i> Operon	824
	Inducers Tune the Level of Regulatory Response	829
19.2.6	Other Regulatory Architectures	829
	The Fold-Change for Different Regulatory Motifs	
	Depends Upon Experimentally Accessible Control Parameters	830
	Quantitative Analysis of Gene Expression in	000
	Eukaryotes Can Also Be Analyzed Using	
	Thermodynamic Models	832

19.3	REGULATORY DYNAMICS	835
19.3.1	The Dynamics of RNA Polymerase and the Promoter	835
	The Concentrations of Both RNA and Protein Can Be	075
19.3.2	Described Using Rate Equations Dynamics of mRNA Distributions Unregulated Promoters Can Be Described By a	835 838
	Poisson Distribution	841
19.3.3	Dynamics of Regulated Promoters The Two-State Promoter Has a Fano Factor Greater	843
	Than One	844
	Different Regulatory Architectures Have Different Fano Factors	840
19.3.4	Dynamics of Protein Translation	849 854
19.3.5	Genetic Switches: Natural and Synthetic	861
19.3.6	Genetic Networks That Oscillate	870
19.4	CELLULAR FAST RESPONSE: SIGNALING	872
19.4.1	Bacterial Chemotaxis The MWC Model Can Be Used to Describe Bacterial	873
	Chemotaxis	878
	Precise Adaptation Can Be Described by a Simple	0.01
19.4.2	Balance Between Methylation and Demethylation Biochemistry on a Leash	881 883
13.1.2	Tethering Increases the Local Concentration of a	
	Ligand Signaling Networks Help Cells Decide When and	884
	Where to Grow Their Actin Filaments for Motility	884
	Synthetic Signaling Networks Permit a Dissection of	
	Signaling Pathways	885
19.5	SUMMARY AND CONCLUSIONS	888
19.6	PROBLEMS	889
19.7 19.8	FURTHER READING REFERENCES	891 892
19.0	REFERENCES	092
	ter 20 Biological Patterns: Order	
in Spa	ace and Time	893
in Spa 20.1	Ace and Time INTRODUCTION: MAKING PATTERNS	893
in Spa	ace and Time	
in Spa 20.1 20.1.1 20.1.2	ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making	893 894 895
in Spa 20.1 20.1.1	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time	893 894
in Spa 20.1 20.1.1 20.1.2 20.2	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes	893 894 895 896
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model	893 894 895 896 896
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos	893 894 895 896 896
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to	893 894 895 896 896 898 898
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling	 893 894 895 896 896 898 898 898 899 905
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient	 893 894 895 896 896 898 898 898 898 899
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.3 20.2.4 20.3	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS	 893 894 895 896 896 898 898 898 899 905
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.2 20.2.3 20.2.3	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing	 893 894 895 896 898 898 898 899 905 912 914
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.3 20.2.4 20.3	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS	 893 894 895 896 896 898 898 898 899 905 912
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.2 20.2.3 20.2.4 20.3 20.3.1	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior–Posterior Axis of Fly Embryos A Reaction–Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION–DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns	 893 894 895 896 898 898 898 899 905 912 914 914
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL	 893 894 895 896 898 898 899 905 912 914 914 920 926
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION	 893 894 895 896 898 898 898 899 905 912 914 920 926 931
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL	 893 894 895 896 898 898 899 905 912 914 914 920 926
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time	 893 894 895 896 898 898 898 899 905 912 914 920 926 931 932 935
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis	 893 894 895 896 898 898 898 899 905 912 914 920 926 931 932
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT	 893 894 895 896 898 898 898 899 905 912 914 920 926 931 932 935 939
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5 20.5.1	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT The Notch-Delta Concept	 893 894 895 896 898 898 899 905 912 914 920 926 931 932 935 939 939
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3.1 20.3.2 20.3.3 20.4 20.3.3 20.4 20.4.1 20.4.2 20.5 20.5.1 20.5.2	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior–Posterior Axis of Fly Embryos A Reaction–Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION–DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT The Notch–Delta Concept <i>Drosophila</i> Eyes SUMMARY AND CONCLUSIONS PROBLEMS	 893 894 895 896 898 898 899 905 912 914 920 926 931 932 935 939 944 947 948
in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3.1 20.3.2 20.3.3 20.4 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5 20.5.1 20.5.2 20.6	Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior–Posterior Axis of Fly Embryos A Reaction–Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION–DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT The Notch–Delta Concept <i>Drosophila</i> Eyes SUMMARY AND CONCLUSIONS	 893 894 895 896 898 898 899 905 912 914 920 926 931 932 935 939 944 947

Chapter 21 Sequences, Specificity, and Evolution

951

Index

21.1	BIOLOGICAL INFORMATION	952
21.1.1 21.1.2	Why Sequences? Genomes and Sequences by the Numbers	953 957
21.2	SEQUENCE ALIGNMENT AND HOMOLOGY	960
	Sequence Comparison Can Sometimes Reveal Deep Functional and Evolutionary Relationships Between Genes, Proteins, and Organisms	961
21.2.1	The HP Model as a Coarse-Grained Model	
21.2.2	for Bioinformatics	964 966
21.2.2	Scoring Success A Score Can Be Assigned to Different Alignments Between Sequences	966
	Comparison of Full Amino Acid Sequences Requires	
	a 20-by-20 Scoring Matrix	968
	Even Random Sequences Have a Nonzero Score The Extreme Value Distribution Determines the	970
	Probability That a Given Alignment Score Would Be Found by Chance	971
	False Positives Increase as the Threshold for	
	Acceptable Expect Values (also Called E-Values) Is Made Less Stringent	973
	Structural and Functional Similarity Do Not Always Guarantee Sequence Similarity	976
21.3	THE POWER OF SEQUENCE GAZING	976
21.3.1	Binding Probabilities and Sequence Position Weight Matrices Provide a Map Between	977
	Sequence and Binding Affinity	978
	Frequencies of Nucleotides at Sites Within a Sequence Can Be Used to Construct Position Weight	
21 2 2	Matrices Using Sequence to Find Binding Sites	979 983
21.3.2	Do Nucleosomes Care About Their Positions on	903
	Genomes?	988
	DNA Sequencing Reveals Patterns of Nucleosome Occupancy on Genomes	989
	A Simple Model Based Upon Self-Avoidance Leads to a Prediction for Nucleosome Positioning	990
21.4	SEQUENCES AND EVOLUTION	993
21.4.1	Evolution by the Numbers: Hemoglobin and Rhodopsin as Case Studies in Sequence Alignment Sequence Similarity Is Used as a Temporal Yardstick	994
	to Determine Evolutionary Distances Modern–Day Sequences Can Be Used to Reconstruct	994
	the Past	996

2	1.4.2	Evolution and Drug Resistance	998
_	1.4.3	Viruses and Evolution	1000
		The Study of Sequence Makes It Possible to Trace	
		the Evolutionary History of HIV	1001
		The Luria-Delbrück Experiment Reveals the	
		Mathematics of Resistance	1002
2	1.4.4	Phylogenetic Trees	1008
2	1.5	THE MOLECULAR BASIS OF FIDELITY	1010
_	1.5.1	Keeping It Specific: Beating Thermodynamic	
-	1.5.1	Specificity	1011
		The Specificity of Biological Recognition Often Far	
		Exceeds the Limit Dictated by Free-Energy	
		Differences	1011
		High Specificity Costs Energy	1015
2	1.6	SUMMARY AND CONCLUSIONS	1016
	1.7	PROBLEMS	1017
	1.8	FURTHER READING	1020
			1021
2	1.9	REFERENCES	1021
	1000	A NAME OF A DESCRIPTION	1000

Chapter 22 Whither Physical Biology? 1023 DRAWING THE MAP TO SCALE 1023 22.1 NAVIGATING WHEN THE MAP IS WRONG 1027 22.2 1028 INCREASING THE MAP RESOLUTION 22.3 "DIFFICULTIES ON THEORY" 1030 22.4 1031 Modeler's Fantasy 1031 Is It Biologically Interesting? Uses and Abuses of Statistical Mechanics 1032 1032 Out-of-Equilibrium and Dynamic 1032 Uses and Abuses of Continuum Mechanics 1033 Too Many Parameters 1033 Missing Facts 1033 Too Much Stuff Too Little Stuff 1034 The Myth of "THE" Cell 1034 Not Enough Thinking 1035 1035 22.5 THE RHYME AND REASON OF IT ALL 22.6 FURTHER READING 1036 1037 REFERENCES 22.7