Contents

Preface, xix

CHAPTER 1

Introduction,

1

1.1 Problem Solving and Decision Making, 2
1.2 Quantitative Analysis and Decision Making, 4
1.3 Quantitative Analysis, 6
Model Development, 6
Data Preparation, 9
Model Solution, 10
Report Generation, 11
A Note Regarding Implementation, 12
1.4 Models of Cost, Revenue, and Profit, 12
Cost and Volume Models, 12
Revenue and Volume Models, 13
Profit and Volume Models, 13
Break-even Analysis, 13
1.5 Management Science in Practice, 15
Management Science Techniques, 15
Methods Used Most Frequently, 16
Implications for the Use of Management Science, 17
1.6 A Microcomputer Software Package, 18
Top Level Menu, 19
Problem Selection Menu, 19
Data Input, 19
Problem Disposition Menu, 20
Solution and Output Information, 20
Data Editing, 20
Saving, Retrieving, and/or Deleting Problems, 20
Further Advice About Data Input, 21
Summary, 21
Glossary, 22
Problems, 22
Management Science in Practice Feature, 25
Management Science in Practice: Mead Corporation, 20

CHAPTER 2	Linear Programming: The Graphical Method, 28
	2.1 A Simple Maximization Problem, 29
	2.2 The Objective Function, 30
	2.3 The Constraints, 31
	2.4 Mathematical Statement of the Par, Inc., Problem, 32
	2.5 Graphical Solution, 33
	A Note on Graphing Lines, 43
	Summary of the Graphical Solution Procedure for Maximization Problems, 44
	Slack Variables, 45
	2.6 Extreme Points and the Optimal Solution, 47
	2.7 A Simple Minimization Problem, 49
	Summary of the Graphical Solution Procedure for Minimization Problems, 51
	Surplus Variables, 52
	2.8 Special Cases, 54
	Alternative Optimal Solutions, 54
/	Infeasibility, 54
	Unboundedness, 57
	2.9 Introduction to Sensitivity Analysis, 58
	2.10 Graphical Sensitivity Analysis, 60 Objective Eurotion Coofficients 60
	Dight Hand Sides 65
	Summary 67
	Glossary 67
	Problems 68
	Case Problem: Advertising Strategy, 87
CHAPTER 3	Linear Programming: Formulation Computer Solution and
	Interpretation 83
	interpretation, 65
	3.1 Computer Solution of Linear Programs, 83
	Interpretation of Computer Output, 85
	Simultaneous Changes, 89
	Interpretation of Computer Output—A Second Example, 90
	Cautionary Note on the Interpretation of Dual Prices, 92
	3.2 More Than Two Decision Variables, 94
	The Diverges Forme D. Hanne 00
	Formulation of the Divergese Former Distributer 00
	The Bluegrass Farms Problem, 99 Formulation of the Bluegrass Farms Problem, 99

Computer Solution and Interpretation for the Bluegrass Farms Problem, 101

10

3.3 Modeling, 103

Guidelines for Model Formulation, 103
The Electronic Communications Problem, 104
Formulation of the Electronic Communications Problem, 105
Computer Solution and Interpretation for the Electronic Communications Problem, 106 Summary, 110 Glossary, 110 Problems, 111 Case Problem: Product Mix, 123 Case Problem: Truck Leasing Strategy, 124 Appendix: Solving Linear Programs with LINDO/PC, 125 Management Science in Practice: Eastman Kodak, 128

CHAPTER 4	Linear Programming Applications, 130
	4.1 Marketing Applications, 130 Media Selection, 130 Marketing Research, 133
	4.2 Financial Applications, 137 Portfolio Selection, 137
and Duality, 240 Tableau, 240	 Financial-Mix Strategy, 141 4.3 Production Management Applications, 145 Production Scheduling, 145 Work Force Assignment, 153 4.4 Blending Problems, 156
	 4.5 Data Envelopment Analysis, 162 Evaluating the Performance of Hospitals, 163 Summary, 167 Problems, 167 Case Problem: Environmental Protection, 183 Case Problem: Investment Strategy, 185 Case Problem: Textile Mill Scheduling, 186 Management Science in Practice: Marathon Oil Company, 187

CHAPTER 5	Line	ar Programming: The Simplex Method,	188
	5.1	An Algebraic Overview of the Simplex Method,	188
		Algebraic Properties of the Simplex Method, 189	
		Determining a Basic Solution, 189	
		Basic Feasible Solutions, 190	
	5.2	Tableau Form, 192	
	5.3	Setting Up the Initial Simplex Tableau, 193	
	5.4	Improving the Solution, 194	
	5.5	Calculating the Next Tableau, 199	
		Interpreting the Results of an Iteration, 201	
		Moving Toward a Better Solution, 202	
		Interpreting the Optimal Solution, 204	
		Summary of the Simplex Method, 205	
	5.6	Solution of a Sample Problem, 205	

5.7	Tableau Form: The General Case, 207				
	Greater-Than-or-Equal-to Constraints, 208				
	Equality Constraints, 213				
	Eliminating Negative Right-Hand-Side Values,	214			
	Summary of the Steps to Create Tableau Form,	215			
5.8	Solving a Minimization Problem, 216				
5.9	Special Cases, 219				
	Infeasibility, 219				
	Unboundedness, 222				
	Alternative Optimal Solutions, 224				
	Degeneracy, 226				
Sum	mary, 227				
Glos	sary, 229				
Prob	olems, 230				

Simplex-Based Sensitivity Analysis and Duality, 240 **CHAPTER 6** Sensitivity Analysis with the Simplex Tableau, 240 6.1 Objective Function Coefficients, 240 Right-Hand-Side Values, 245 Simultaneous Changes, 251 6.2 Duality, 252 Economic Interpretation of the Dual Variables, 255 Using the Dual to Identify the Primal Solution, 257 Finding the Dual of Any Primal Problem, 257 Computational Considerations, 259 260 Summary, Glossary, 260 Problems, 261 **Management Science in Practice: Performance Analysis** Corporation, 270

CH	AP	TEI	27

Transportation, Assignment, and Transshipment Problems, 272

7.1 The Transportation Problem: The Network Model and a Linear Programming Formulation, 272
 Problem Variations, 277
 A General Linear Programming Model of the Transportation Problem, 279

7.2 The Assignment Problem: The Network Model and a Linear Programming Formulation, 280

Problem Variations, 283

A General Linear Programming Model of the Assignment Problem, 284 Multiple Assignments, 285

7.3	The Transshipment Problem: The Network Model and a Linear
	Programming Formulation, 285
	A General Linear Programming Model of the Transshipment Problem, 291
7.4	A Production and Inventory Application, 292
7.5	The Transportation Simplex Method: A Special-Purpose Solution
	Procedure, 296
	Phase I: Finding an Initial Feasible Solution, 297
	Phase II: Iterating to the Optimal Solution, 300
	Summary of the Transportation Simplex Method, 310
	Problem Variations, 311
7.6	The Assignment Problem: A Special-Purpose Solution
	Procedure, 315
	Finding the Minimum Number of Lines, 318
	Problem Variations, 318
Sum	mary, 321
Glos	sary, 322
Prob	lems, 323
Case	Problem: Assigning Umpire Crews, 338
Case	Problem: Distribution System Design, 340
Man	agement Science in Practice: Optimal Decision Systems, Inc., 343
	Darry 503 off wirvito A diagonal

CHAPTER 8

Integer Linear Programming, 345

8.1	Types	of	Integer	Linear	Programming	Models,	346
-----	-------	----	---------	--------	-------------	---------	-----

- 8.2 Graphical Solution, 346
- 8.3 Applications of Integer Linear Programming, 350
 Capital Budgeting, 350
 Multiple-Choice and Mutually Exclusive Constraints, 352
 k Out of *n* Alternatives Constraint, 353

Conditional and Corequisite Constraints, 353

A Cautionary Note on Sensitivity Analysis, 353

Distribution System Design, 354

- **8.4 Computer Solution, 356** A Bank Location Application, 357
- 8.5 Branch-and-Bound Solution, 361 Extension to Mixed-Integer Linear Programs, 367
 Summary, 368
 Glossary, 368

Problems, 369

Case Problem: Textbook Publishing, 378 Management Science in Practice: KETRON, 380

CHAPTER 9

Network Models, 382

9.1 The Shortest-Route Problem, 382 A Shortest-Route Algorithm, 383

A Minimal Spanning Tree Algorithm, 391 9.3 The Maximal Flow Problem, 394 A Maximal Flow Algorithm, 395 Summary, 400 Glossary, 400 Problems, 401 Case Problem: Ambulance Routing, 408 Management Science in Practice: EDS, 410	9.2 The Minimal Spanning Tree Problem, 3	91
 9.3 The Maximal Flow Problem, 394 A Maximal Flow Algorithm, 395 Summary, 400 Glossary, 400 Problems, 401 Case Problem: Ambulance Routing, 408 Management Science in Practice: EDS, 410 	A Minimal Spanning Tree Algorithm, 391	
A Maximal Flow Algorithm, 395 Summary, 400 Glossary, 400 Problems, 401 Case Problem: Ambulance Routing, 408 Management Science in Practice: EDS, 410	9.3 The Maximal Flow Problem, 394	
Summary, 400 Glossary, 400 Problems, 401 Case Problem: Ambulance Routing, 408 Management Science in Practice: EDS, 410	A Maximal Flow Algorithm, 395	
Glossary, 400 Problems, 401 Case Problem: Ambulance Routing, 408 Management Science in Practice: EDS, 410	Summary, 400	
Problems, 401 Case Problem: Ambulance Routing, 408 Management Science in Practice: EDS, 410	Glossary, 400	
Case Problem: Ambulance Routing, 408 Management Science in Practice: EDS, 410	Problems, 401	
Management Science in Practice: EDS, 410	Case Problem: Ambulance Routing, 408	
	Management Science in Practice: EDS, 410	

CHAPTER 10	Project Scheduling: PERI/CPM, 412
	 10.1 PERT/CPM Networks, 413 10.2 Project Scheduling with PERT/CPM, 416 The Critical Path, 417 Contributions of PEPT/CPM 422
	Summary of the PERT/CPM Critical Path Procedure, 422
	10.3 Project Scheduling with Uncertain Activity Times, 424
	The Daugherty Porta-Vac Project, 424
	Uncertain Activity Times, 425
	The Critical Path, 427
	Variability in the Project Completion Time, 428
	10.4 Considering Time-Cost Trade-Offs, 432
	Crashing Activity Times, 433
	A Linear Programming Model for Crashing Decisions, 434
	10.5 PERT/Cost, 437
	Planning and Scheduling Project Costs, 438
	Controlling Project Costs, 440
	Summary, 443
	Glossary, 444
	Problems, 445
	Case Problem: Warehouse Expansion, 459
	Management Science in Practice: Seasongood & Mayer, 401

CHAPTER 11

Inventory	Models.	463
In vericery	TVICCICIO,	100

11.1 Economic Order Quantity (EOQ) Model, 464 The How-Much-to-Order Decision, 468

The When-to-Order Decision, 469Sensitivity Analysis in the EOQ Model, 470The Manager's Use of the EOQ Model, 471How Has the EOQ Decision Model Helped?, 471A Summary of the EOQ Model Assumptions, 472

11.2	Economic Production Lot Size Model. 473
	The Total Cost Model. 474
	Finding the Economic Production Lot Size. 475
113	An Inventory Model with Planned Shortages, 476
11.5	Quantity Discounts for the FOO Model. 480
11.5	A Single-Period Inventory Model with Probabilistic
11.5	Demand. 482
	The Johnson Shoe Company Problem, 484
	The Kremer Chemical Company Problem, 487
11.6	An Order-Ouantity, Reorder-Point Model with Probabilistic
	Demand, 489
	The How-Much-to-Order Decision, 490
	The When-to-Order Decision, 491
11.7	A Periodic-Review Model with Probabilistic Demand, 492
	More Complex Periodic-Review Models, 495
11.8	Material Requirements Planning, 496
	Dependent Demand and the MRP Concept, 496
	Information System for MRP, 497
	MRP Calculations, 499
11.9	The Just-In-Time Approach to Inventory Management, 501
Sumn	nary, 503
Gloss	ary, 503
Probl	ems, 504
Case	Problem: A Make-or-Buy Analysis, 512
APPE	NDIX 11.1 Development of the Optimal Order-Quantity (Q^*)
For	mula for the EOQ Model, 514
APPE	NDIX 11.2 Development of the Optimal Lot Size (Q*) Formula for
the	Production Lot Size Model, 514

APPENDIX 11.3 Development of the Optimal Order-Quantity (Q*) and Optimal Backorder (S*) Formulas for the Planned Shortage Model, 515 Management Science in Practice: SupeRx, Inc., 517

CHAPTER 12

Waiting Line Models, 519

- 12.1 The Structure of a Waiting Line System, 520 The Single-Channel Waiting Line, 520 The Process of Arrivals, 520 The Distribution of Service Times, 522 Queue Discipline, 522 Steady-State Operation, 524
- 12.2 The Single-Channel Waiting Line Model with Poisson Arrivals and Exponential Service Times, 524

The Manager's Use of Waiting Line Models, 526
Improving the Waiting Line Operation, 526
12.3 The Multiple-Channel Waiting Line Model with Poisson Arrivals
and Exponential Service Times, 527
The Operating Characteristics, 528
Operating Characteristics for the Burger Dome Problem, 529
12.4 Some General Relationships for Waiting Line Models, 532
12.5 Economic Analysis of Waiting Lines, 533
12.5 Other Waiting Line Models, 536
12.7 The Single-Channel Waiting Line Model with Poisson Arrivals
and Arbitrary Service Times, 536
Operating Characteristics for the $M/G/1$ Model, 537
Constant Service Times, 538
12.8 A Multiple-Channel Model with Poisson Arrivals, Arbitrary
Service Times and No Waiting Line, 539
The Operating Characteristics for the $M/G/1$ Model with Blocked Customers
Cleared, 539
12.9 Waiting Line Models with Finite Calling Populations, 541
The Operating Characteristics for the $M/M/1$ Model with a Finite Calling
Population, 542
Summary, 543
Glossary, 545
Problems, 545
Case Problem: Airline Reservations, 552
Management Science in Practice: Goodyear Tire & Rubber
Company, 554

The Operating Characteristics, 524

Characteristics for The Burger Dome Problem, 525

CHAPTER 13

Computer Simulation, 556

13.1 County Beverage Drive-Thru, 557

Simulation of Customer Arrivals and Order Sizes, 558 Logic of the Simulation Model for County Beverage Drive-Thru, 561 Generating Pseudorandom Numbers, 565 Computer Program and Results, 566

13.2 County Beverage Drive-Thru: Improving the System Design, 569 System A, 570

System B, 570

13.3 Modeling, Validation, and Statistical Considerations, 571 Selecting a Simulation Language, 572

Validation, 572

Start-Up Problems, 573

Statistical Considerations, 573

- 13.4 An Inventory Simulation Model, 574
- 13.5 Advantages and Disadvantages of Computer Simulation, 579

Summary, 580 Glossary, 580 Problems, 581 Case Problem: Machine Repair, 590 Management Science in Practice: The Upjohn Company, 591

CHAPTER 14	Decision Analysis, 593	
	14.1 Structuring the Decision Problem, 594 Payoff Tables, 594 Decision Trees, 595	
	 14.2 Decision Making Without Probabilities, 596 Optimistic Approach, 596 Conservative Approach, 597 Minimax Regret Approach, 598 	
	14.3 Decision Making with Probabilities, 599	
	14.4 Sensitivity Analysis, 601	
	14.5 Expected Value of Perfect Information, 604	
	14.6 Decision Analysis with Sample Information, 606	
	14.7 Developing a Decision Strategy, 607	
	Computing Branch Probabilities, 609 Computing Branch Probabilities: A Tabular Procedure, 611	
	An Optimal Decision Strategy, 613	
	14.8 Expected Value of Sample Information, 615	
	Efficiency of Sample Information, 615 14.9 Utility and Decision Making, 616 The Meaning of Utility, 617 Developing Utilities for Payoffs, 618 The Expected Utility Approach, 621	
	Summary, 622	
	Glossary, 623	
	Problems, 624	
	Case Problem: Property Purchase Strategy, 641	
CHX9 10 10 10 10 10 10 10 10 10 10 10 10 10	Management Science in Practice: Ohio Edison Company, 643	

CHAPTER 15

Multicriteria Decision Problems, 646

- **15.1 Goal Programming: Formulation and Graphical Solution, 647** Developing the Constraints and the Goal Equations, 648 Developing an Objective Function with Preemptive Priorities, 649 The Graphical Solution Procedure, 650 The Goal Programming Model, 654
- **15.2 Goal Programming: Solving More Complex Problems, 655** The Suncoast Office Supplies Problem, 655 Formulating the Goal Equations, 656

Formulating the Objective Function, 657 Computer Solution, 659 15.3 The Analytic Hierarchy Process, 662 Developing the Hierarchy, 663 15.4 Establishing Priorities Using AHP, 664 Pairwise Comparisons, 664 The Pairwise Comparison Matrix, 665 Synthesis, 666 Procedure for Synthesizing Judgments, 666 Consistency, 667 Estimating the Consistency Ratio, 668 Other Pairwise Comparisons for the Car-Selection Problem, 669 15.5 Using AHP to Develop an Overall Priority Ranking, 671 15.6 Using Expert Choice to Implement AHP, 672 Summary, 676 Glossary, 676 Problems, 677 Case Problem: Production Scheduling, 684

CHAPTER 16 Fored	casting, 686
16.1	The Components of a Time Series,687Trend Component,687Cyclical Component,688Seasonal Component,689Irregular Component,690
16.2 16.3 16.4	Forecasting Using Smoothing Methods, 690 Moving Averages, 690 Weighted Moving Averages, 692 Exponential Smoothing, 693 Forecasting a Time Series Using Trend Projection, 697 Forecasting a Time Series with Trend and Seasonal Components, 700
16.5 16.6	Calculating the Seasonal Indexes, 702 Deseasonalizing the Time Series, 705 Using the Deseasonalized Time Series to Identify Trend, 706 Seasonal Adjustments, 708 Models Based on Monthly Data, 708 Cyclical Component, 709 Forecasting Using Regression Models, 709 Using Regression Analysis When Time Series Data Are Not Available, 709 Using Regression Analysis When Time Series Are Available, 714 Qualitative Approaches to Forecasting, 716

Summary, 717 Glossary, 717 Problems, 718 Case Problem: Forecasting Sales, 727 Management Science in Practice: The Cincinnati Gas & Electric Company, 729

CHAPTER 17	Markov Process, 731
	 17.1 Market Share Analysis, 731 17.2 Accounts Receivable Analysis, 741 The Fundamental Matrix and Associated Calculations, 743 Establishing the Allowance for Doubtful Accounts, 744 Summary, 746 Glossary, 746 Problems, 746 Management Science in Practice: U.S. General Accounting Office, 750
CHAPTER 18	Dynamic Programming, 752
	 18.1 A Shortest-Route Problem, 752 18.2 Dynamic Programming Notation, 757 18.3 The Knapsack Problem, 762 18.4 A Production and Inventory Control Problem, 766 Summary, 770 Glossary, 771 Problems, 771 Management Science in Practice: The U.S. Environmental Protection Agency, 778
CHAPTER 19	Calculus-Based Solution Procedures, 780
	 19.1 Models with One Decision Variable, 780 19.2 Unconstrained Models with More Than One Decision Variable, 789 19.3 Models with Equality Constraints: Lagrange Multipliers, 796 19.4 Interpretation of the Lagrange Multiplier, 802 19.5 Models Involving Inequality Constraints, 805 Summary, 808 Glossary, 809 Problems, 809 Management Science in Practice: U.S. Department of Agriculture Forest Service, 813

xviii Contents

Appendixes, A-1

A. Areas for the Standard Normal Distribution, A-2

B. Random Digits, A-3

C. Values of $e^{-\lambda}$, A-4

D. A Short Table of Derivatives, A-5

E. Matrix Notation and Operations, A-6

F. References and Bibliography, A-9

- G. Answers to Even-Numbered Problems, A-14
- H. Self-Test Solutions, A-25

Index, I-1