Contents

Preface

The Constraints March 1997

page xiii

1 Introduction		1
1.1 Applications of Mobile Robots		2
1.2 Types of Mobile Robots		2
1.2 1 Automated Guided Vehicles (AGVs)		2
1.2.2 Service Robots		3
1.2.3 Cleaning and Lawn Care Robots		4
1.2.4 Social Robots		4
1.2.5 Field Robots		5
1.2.6 Inspection, Reconnaissance, Surveilla	nce,	6
1.2 Mobile Pobot Engineering		7
1.5 Mobile Robot Eligineering		7
1.3.1 Mobile Robot Subsystems		8
1.3.2 Overview of the Text	bota	0
1.3.4 References and Eurther Reading	bots	11
1.3.5 Everyise		11
		10
2 Math Fundamentals		12
2.1 Conventions and Definitions		12
2.1.1 Notational Conventions		13
2.1.2 Embedded Coordinate Frames		1/
2.1.3 References and Further Reading		21
2.2 Matrices		21
2.2.1 Matrix Operations		21
2.2.2 Matrix Functions		24
2.2.3 Matrix Inversion		25
2.2.4 Rank-Nullity Theorem		20
2.2.5 Matrix Calculus		29
2.2.0 Matrix Calculus		30
2.2.7 LEIDINZ KUIC 2.2.8 Deferences and Eurther Deading	Excitotes summer multiple	40
2.2.0 References and Further Reading		40
2.2.7 EACICISES		40

2.3	Fundamentals of Rigid Transforms	41
	2.3.1 Definitions	41
	2.3.2 Why Homogeneous Transforms	42
	2.3.3 Semantics and Interpretations	43
	2.3.4 References and Further Reading	55
	2.3.5 Exercises	56
2.4	Kinematics of Mechanisms	57
	2.4.1 Forward Kinematics	57
	2.4.2 Inverse Kinematics	61
	2.4.3 Differential Kinematics	66
	2.4.4 References and Further Reading	69
	2.4.5 Exercises	69
2.5	Orientation and Angular Velocity	70
	2.5.1 Orientation in Euler Angle Form	70
	2.5.2 Angular Rates and Small Angles	75
	2.5.3 Angular Velocity and Orientation Rates in Euler Angle Form	77
	2.5.4 Angular Velocity and Orientation Rates in Angle-Axis Form	79
	2.5.5 References and Further Reading	81
	2.5.6 Exercises	81
2.6	Kinematic Models of Sensors	82
0	2.6.1 Kinematics of Video Cameras	82
	2.6.2 Kinematics of Laser Rangefinders	83
	2.6.3 References and Further Reading	89
	2.6.4 Exercises	90
2.7	Transform Graphs and Pose Networks	90
	2.7.1 Transforms as Relationships	90
	2.7.2 Solving Pose Networks	93
	2.7.3 Overconstrained Networks	95
	2.7.4 Differential Kinematics Applied to Frames in General Position	97
	2.7.5 References and Further Reading	102
	2.7.6 Exercises	102
2.8	Quaternions	103
	2.8.1 Representations and Notation	104
	2.8.2 Quaternion Multiplication	105
	2.8.3 Other Quaternion Operations	107
	2.8.4 Representing 3D Rotations	109
	2.8.5 Attitude and Angular Velocity	111
	2.8.6 References and Further Reading	114
	2.8.7 Exercises	114
2 N.	marical Mathada	116
J NU	Linearization and Ontimization of Exactions of Vesters	110
3.1	Linearization and Optimization of Functions of Vectors	110
	3.1.1 Linearization	117
	3.1.2 Optimization of Objective Functions	120
	3.1.3 Constrained Optimization	124
	3.1.4 References and Further Reading	130
2.0	3.1.5 Exercises	130
3.2	Systems of Equations	131
	3.2.1 Linear Systems	131
	3.2.2 Nonlinear Systems	136

	3.2.3 References and Further Reading		138
	3.2.4 Exercises		139
3.3	Nonlinear and Constrained Optimization		140
	3.3.1 Nonlinear Optimization		140
	3.3.2 Constrained Optimization		146
	3.3.3 References and Further Reading		150
	3.3.4 Exercises		150
3.4	Differential Algebraic Systems		151
	3.4.1 Constrained Dynamics		151
	3.4.2 First- and Second-Order Constrained Kinematic Systems		154
	3.4.3 Lagrangian Dynamics		157
	3.4.4 Constraints		162
	3.4.5 References and Further Reading		166
	3.4.6 Exercises		167
3.5	Integration of Differential Equations		168
8	3.5.1 Dynamic Models in State Space		168
	3.5.2 Integration of State Space Models		168
	3.5.3 References and Further Reading		172
	3.5.4 Exercises		172
1.D.	Communous Integration and Avenuing Processing manager		173
4 Dyi	Manies Coordinate Systems		173
4.1	Moving Coordinate Systems		173
	4.1.1 Context of Measurement		174
	4.1.2 Change of Reference Frame		175
	4.1.3 Example: Attitude Stability Margin Estimation		180
	4.1.4 Recursive Transformations of State of Motion		182
	4.1.5 References and Further Reading		186
	4.1.6 Exercises		180
4.2	Kinematics of Wheeled Mobile Robots		187
	4.2.1 Aspects of Rigid Body Motion		187
	4.2.2 WMR Velocity Kinematics for Fixed Contact Point		191
	4.2.3 Common Steering Configurations		195
	4.2.4 References and Further Reading		200
148	4.2.5 Exercises		201
4.3	Constrained Kinematics and Dynamics		201
	4.3.1 Constraints of Disallowed Direction		202
	4.3.2 Constraints of Rolling Without Slipping		207
	4.3.3 Lagrangian Dynamics		211
	4.3.4 Terrain Contact		217
	4.3.5 Trajectory Estimation and Prediction		220
	4.3.6 References and Further Reading		224
	4.3.7 Exercises		225
4.4	Aspects of Linear Systems Theory		226
	4.4.1 Linear Time-Invariant Systems		227
	4.4.2 State Space Representation of Linear Dynamical Systems		234
	4.4.3 Nonlinear Dynamical Systems		239
	4.4.4 Perturbative Dynamics of Nonlinear Dynamical Systems		240
	4.4.5 References and Further Reading		244
	4.4.6 Exercises		244

vii

4.5	Predictive Modeling and System Identification	245
	4.5.1 Braking	245
	4.5.2 Turning	247
	4.5.3 Vehicle Rollover	250
	4.5.4 Wheel Slip and Yaw Stability	253
	4.5.5 Parameterization and Linearization of Dynamic Models	256
	4.5.6 System Identification	259
	4.5.7 References and Further Reading	268
	4.5.8 Exercises	269
5 On	otimal Estimation	270
51	Random Variables, Processes, and Transformation	270
000	5.1.1 Characterizing Uncertainty	270
	5.1.2 Random Variables	272
	5.1.3 Transformation of Uncertainty	279
	514 Random Processes	289
	515 References and Further Reading	294
	516 Exercises	295
5.2	Covariance Propagation and Optimal Estimation	296
	5.2.1 Variance of Continuous Integration and Averaging Processes	296
	5.2.2 Stochastic Integration	301
	5.2.3 Optimal Estimation	307
	5.2.4 References and Further Reading	315
	5.2.5 Exercises	315
5.3	State Space Kalman Filters	316
	5.3.1 Introduction	316
	5.3.2 Linear Discrete Time Kalman Filter	319
	5.3.3 Kalman Filters for Nonlinear Systems	321
	5.3.4 Simple Example: 2D Mobile Robot	327
	5.3.5 Pragmatic Information for Kalman Filters	338
	5.3.6 Other Forms of the Kalman Filter	344
	5.3.7 References and Further Reading	344
	5.3.8 Exercises	345
5.4	Bayesian Estimation	346
	5.4.1 Definitions	346
	5.4.2 Bayes' Rule	349
	5.4.3 Bayes' Filters	353
	5.4.4 Bayesian Mapping	358
	5.4.5 Bayesian Localization	365
	5.4.6 References and Further Reading	369
	5.4.7 Exercises	369
6 Sta	ate Estimation	370
6.1	Mathematics of Pose Estimation	370
1 227	6.1.1 Pose Fixing versus Dead Reckoning	371
	6.1.2 Pose Fixing	372
	6.1.3 Error Propagation in Triangulation	376
	6.1.4 Real Pose Fixing Systems	384
	6.1.5 Dead Reckoning	385
	6.1.6 Real Dead Reckoning Systems	396
	6.1.7 References and Further Reading	396
	6.1.8 Exercises	397

62	Sensors for State Estimation		398
0.2	6.2.1 Articulation Sensors		398
	6.2.2 Ambient Field Sensors	loson Recencion administration	400
	6.2.3 Inertial Frames of Reference	Stopresentationolismeenges?	401
	6.2.4 Inertial Sensors		403
	6.2.5 References and Further Reading		409
	6.2.6 Exercises		410
63	Inertial Navigation Systems		410
0.0	6.3.1 Introduction		410
	6.3.2 Mathematics of Inertial Navigation		411
	6.3.3 Errors and Aiding in Inertial Navigation	n	416
	6.3.4 Example: Simple Odometry-Aided Att	titude	
	and Heading Reference System	Matching Signals and Imagel	420
	6.3.5 References and Further Reading		423
	6.3.6 Exercises		424
6.4	Satellite Navigation Systems		425
	6.4.1 Introduction		425
	6.4.2 Implementation		425
	6.4.3 State Measurement		426
	6.4.4 Performance	Technicas for Danas Concine	430
	6.4.5 Modes of Operation		431
	6.4.6 References and Further Reading		433
	6.4.7 Exercises		434
7 Co	ntrol /		435
71	Classical Control		435
	7.1.1 Introduction		435
	71.2 Virtual Spring-Damper		439
	7.1.3 Feedback Control		441
	7.1.4 Model Referenced and Feedforward C	ontrol	447
	7.1.5 References and Further Reading		452
	7.1.6 Exercises		452
7.2	State Space Control		453
222	7.2.1 Introduction		453
	7.2.2 State Space Feedback Control		454
	7.2.3 Example: Robot Trajectory Following		458
	7.2.4 Perception Based Control		463
	7.2.5 Steering Trajectory Generation		466
	7.2.6 References and Further Reading		472
	7.2.7 Exercises		472
7.3	Optimal and Model Predictive Control		473
	7.3.1 Calculus of Variations		473
	7.3.2 Optimal Control		476
	7.3.3 Model Predictive Control		482
	7.3.4 Techniques for Solving Optimal Contr	rol Problems	484
	7.3.5 Parametric Optimal Control		487
	7.3.6 References and Further Reading		492
	7.3.7 Exercises		492

ix

7.4	Intelligent Control	493	3
	7.4.1 Introduction	49	3
	7.4.2 Evaluation	49	6
	7.4.3 Representation	49	9
	7.4.4 Search	50'	7
	7.4.5 References and Further Reading	51	2
	7.4.6 Exercises	513	3
8 Per	rception	2 lainent 651	1
81	Image Processing Operators and Algorithms	51	1
0.1	8.1.1. Taxonomy of Computer Vision Algorithms	512	+
	8.1.2 High Days Filtering Operation Algorithms	51:	2
	8.1.2 High-Pass Filtering Operators	51	1
	8.1.3 Low-Pass Operators	52.	3
	8.1.4 Matching Signals and Images	524	4
	8.1.5 Feature Detection	520	5
	8.1.6 Region Processing	529	9
	8.1.7 References and Further Reading	532	2
	8.1.8 Exercises	533	3
8.2	Physics and Principles of Radiative Sensors	534	1
	8.2.1 Radiative Sensors	534	4
	8.2.2 Techniques for Range Sensing	535	5
	8.2.3 Radiation	539	9
	8.2.4 Lenses, Filters, and Mirrors	545	5
	8.2.5 References and Further Reading	550	C
	8.2.6 Exercises	551	1
8.3	Sensors for Perception	551	1
	8.3.1 Laser Rangefinders	551	1
	8.3.2 Ultrasonic Rangefinders	555	5
	8.3.3 Visible Wavelength Cameras	557	7
	8.3.4 Mid to Far Infrared Wavelength Cameras	560)
	8.3.5 Radars	562	2
	8.3.6 References and Further Reading	564	1
	8.3.7 Exercises	565	5
8.4	Aspects of Geometric and Semantic Computer Vision	565	5
	8.4.1 Pixel Classification	565	5
	8.4.2 Computational Stereo Vision	568	3
	8.4.3 Obstacle Detection	572	2
	8.4.4 References and Further Reading	576	5
	8.4.5 Exercises	576	5
010	polization and Manning	570	
9 L00	Deserve and Mapping	5/9	
9.1	Representation and Issues	580)
	9.1.1 Introduction	580)
	9.1.2 Representation	580)
	9.1.3 Timing and Motion Issues	583	5
	9.1.4 Related Localization Issues	585	,
	9.1.5 Structural Aspects	586)
	9.1.6 Example: Unmanned Ground Vehicle (UGV) Terrain Mapping	588	5
	9.1.7 References and Further Reading	592	2
	9.1.8 Exercises	593	5

C	0	N	T	E	N	T	S
~	~		-	-		-	\sim

02 Vi	sual Localization and Motion Estimation	593
9.2 11	1 Introduction	593
92	2 Aligning Signals for Localization and Motion Estimation	600
92	3 Matching Features for Localization and Motion Estimation	606
9.2	4 Searching for the Optimal Pose	612
9.2	5 References and Further Reading	621
9.2	6 Exercises	622
93 Sir	nultaneous Localization and Mapping	623
9.3	1 Introduction	623
9.3	2 Global Consistency in Cyclic Maps	624
93	3 Revisiting	630
9.3	4 EKF SLAM for Discrete Landmarks	632
93	5 Example: Autosurveying of Laser Reflectors	636
9.3	.6 References and Further Reading	638
9.3	.7 Exercises	639
10 Moti	on Planning	640
10 1	Introduction	640
10.1	10.1.1. Introducing Path Planning	641
	10.1.2 Formulation of Path Planning	642
	10.1.3 Obstacle-Free Motion Planning	643
	10.1.4 References and Further Reading	646
	10.1.5 Exercises	646
10.2	Representation and Search for Global Path Planning	646
10.2	10.2.1 Sequential Motion Planning	647
	10.2.2 Big Ideas in Optimization and Search	653
	10.2.3 Uniform Cost Sequential Planning Algorithms	656
	10.2.4 Weighted Sequential Planning	661
	10.2.5 Representation for Sequential Motion Planning	669
	10.2.6 References and Further Reading	672
	10.2.7 Exercises	672
10.3	Real-Time Global Motion Planning:	
ats perva	Moving in Unknown and Dynamic Environments	673
	10.3.1 Introduction	673
	10.3.2 Depth-Limited Approaches	674
	10.3.3 Anytime Approaches	677
	10.3.4 Plan Repair Approach: D* Algorithm	678
	10.3.5 Hierarchical Planning	686
	10.3.6 References and Further Reading	689
	10.3.7 Exercise	690

Index 691

xi