Since the times of Gauss, Riemann, and Poincaré, one of the principal goals of the study of manifolds has been to relate local analytic properties of a manifold with its global topological properties. Among the high points on this route are the Gauss-Bonnet formula, the de Rham complex, and the Hodge theorem; these results show, in particular, that the central tool in reaching the main goal of global analysis is the theory of differential forms.

This book is a comprehensive introduction to differential forms. It begins with a quick presentation of the notion of differentiable manifolds and then develops basic properties of differential forms as well as fundamental results about them, such as the de Rham and Frobenius theorems. The second half of the book is devoted to more advanced material, including Laplacians and harmonic forms on manifolds, the concepts of vector bundles and fiber bundles, and the theory of characteristic classes. Among the less traditional topics treated in the book is a detailed description of the Chern-Weil theory.

With minimal prerequisites, the book can serve as a textbook for an advanced undergraduate or a graduate course in differential geometry.

w.ams.or

Preface	xiii
Preface to the English Edition	xvii
Outline and Goal of the Theory	xix
Chapter 1 Manifolds 1.1 What is a manifold? (a) The <i>n</i> -dimensional numerical space \mathbb{R}^n	1 2 2
(b) Topology of \mathbb{R}^n (c) C^∞ functions and diffeomorphisms	3 4
 (d) Tangent vectors and tangent spaces of ℝⁿ (e) Necessity of an abstract definition 	6 10
 1.2 Definition and examples of manifolds (a) Local coordinates and topological manifolds (b) Definition of differentiable manifolds 	11 11 13
(c) \mathbb{R}^n and general surfaces in it (d) Submanifolds	16 19
(e) Projective spaces(f) Lie groups	21 22
 1.3 Tangent vectors and tangent spaces (a) C[∞] functions and C[∞] mappings on manifolds (b) Practical construction of C[∞] functions on a man- 	23 23
ifold (c) Partition of unity	25 27
 (d) Tangent vectors (e) The differential of maps (f) Immersions and embeddings 	29 33 34
1.4 Vector fields (a) Vector fields	36 36
(b) The bracket of vector fields	38

(c) In	ntegral curves of vector fields and one-parameter	
g	roup of local transformations	39
(d) 1	ransformations of vector fields by diffeomorphism	44
1.5 Fun	damental facts concerning manifolds	44
(a) N (b) C	nanifolds with boundary	44
	roup actions	40
(c) c	undamental groups and covering manifolds	49 51
(u) r Summary	undamental groups and covering mannolds	54
Exercises		55
Chapter 2 Di	fferential Forms	57
21 Def	inition of differential forms	57
(a) [)ifferential forms on \mathbb{R}^n	57
(b) I)ifferential forms on a general manifold	61
(c) T	The exterior algebra	61
(d) V	Various definitions of differential forms	66
2.2 Var	ious operations on differential forms	69
(a) E	Exterior product	69
(b) E	Exterior differentiation	70
(c) F	Pullback by a map	72
(d) I	nterior product and Lie derivative	72
(e)]	The Cartan formula and properties of Lie deriva- ives	73
(f) I	Lie derivative and one-parameter group of local	
t	ransformations	77
2.3 Fro	benius theorem	80
(a) I	Frobenius theorem — Representation by vector	90
(b) (Commutative vector fields	82
(c) H	Proof of the Frobenius theorem	83
(b)	The Frobenius theorem — Bepresentation by dif-	00
(u) f	erential forms	86
2.4 A f	ew facts	89
(a) I	Differential forms with values in a vector space	89
(b) 7	The Maurer-Cartan form of a Lie group	90
Summary	V C I	92
Exercises		93
-		
Chapter 3 Th	e de Rham Theorem	95
3.1 Hor	nology of manifolds	96

CONTENTS

CONTENTS	ix
(a) Homology of simplicial complexes	96
(b) Singular homology	99
(c) C^{∞} triangulation of C^{∞} manifolds	100
(d) C^{∞} singular chain complexes of C^{∞} manifolds	103
3.2 Integral of differential forms and the Stokes theorem	m 104
(a) Integral of <i>n</i> -forms on <i>n</i> -dimensional manifolds	104
(b) The Stokes theorem (in the case of manifolds)	107
(c) Integral of differential forms on chains, and th	ne
Stokes theorem	109
3.3 The de Rham theorem	111
(a) de Rham cohomology	111
(b) The de Rham theorem	113
(c) Poincaré lemma	116
3.4 Proof of the de Rham theorem	119
(a) Čech cohomology	119
(b) Comparison of de Rham cohomology and Čech c	0-
homology	121
(c) Proof of the de Rham theorem	126
(d) The de Rham theorem and product structure	131
3.5 Applications of the de Rham theorem	133
(a) Hopf invariant	133
(b) The Massey product	136
(c) Cohomology of compact Lie groups	137
(d) Mapping degree	138
(e) Integral expression of the linking number by Gau	ss 140
Summary	142
Exercises	142
Chapter 4 Laplacian and Harmonic Forms	145
4.1 Differential forms on Riemannian manifolds	145
(a) Riemannian metric	145
(b) Riemannian metric and differentieal forms	148
(c) The *-operator of Hodge	150
4.2 Laplacian and harmonic forms	153
4.3 The Hodge theorem	158
(a) The Hodge theorem and the Hodge decomopor	si-
tion of differential forms	158
(b) The idea for the proof of the Hodoge decomposition	si-
tion	160
4.4 Applications of the Hodge theorem	162

C	0	N	T	EI	V	TS
0	~	7.4	+			T C

(a) The Poincaré duality theorem	162
(b) Manifolds and Euler number	164
(c) Intersection number	165
Summary	166
Exercises	167
Chapter 5 Vector Bundles and Characteristic Classes	169
5.1 Vector bundles	169
(a) The tangent bundle of a manifold	169
(b) Vector bundles	170
(c) Several constructions of vector bundles	173
5.2 Geodesics and parallel translation of vectors	180
(a) Geodesics	180
(b) Covariant derivative	181
(c) Parallel displacement of vectors and curvature	183
5.3 Connections in vector bundles and	185
(a) Connections	185
(b) Curvature	186
(c) Connection form and curvature form	188
(d) Transformation rules of the local expressions for a	
connection and its curvature	190
(e) Differential forms with values in a vector bundle	191
5.4 Pontrjagin classes	193
(a) Invariant polynomials	193
(b) Definition of Pontrjagin classes	197
(c) Levi-Civita connection	201
5.5 Chern classes	204
(a) Connection and curvature in a complex vector bun-	
dle	204
(b) Definition of Chern classes	205
(c) Whitney formula	207
(d) Relations between Pontrjagin and Chern classes	208
5.6 Euler classes	211
(a) Orientation of vector bundles	211
(b) The definition of the Euler class	211
(c) Properties of the Euler class	214
5.7 Applications of characteristic classes	216
(a) The Gauss-Bonnet theorem	216
(b) Characteristic classes of the complex projective	-
space	223

CONTENTS	xi
(c) Characteristic numbers	225
Summary	228
Exercises	229
Chapter 6 Fiber Bundles and Characteristic Classes	231
6.1 Fiber bundle and principal bundle	231
(a) Fiber bundle	231
(b) Structure group	233
(c) Principal bundle	236
(d) The classification of fiber bundles and character-	
istic classes	238
(e) Examples of fiber bundles	239
6.2 S^1 bundles and Euler classes	240
(a) S^1 bundle	241
(b) Euler class of an S^1 bundle	241
(c) The classification of S^1 bundles	246
(d) Defining the Euler class for an S^1 bundle by using	
differential forms	249
(e) The primary obstruction class and the Euler class	
of the sphere bundle	254
(f) Vector fields on a manifold and Hopf index theo-	
rem	255
6.3 Connections	257
(a) Connections in general fiber bundles	257
(b) Connections in principal bundles	260
(c) Differential form representation of a connection in	
a principal bundle	262
6.4 Curvature	265
(a) Curvature form	265
(b) Weil algebra	268
(c) Exterior differentiation of the Weil algebra	270
6.5 Characteristic classes	275
(a) Weil homomorphism	275
(b) Invariant polynomials for Lie groups	279
(c) Connections for vector bundles and principal bun-	000
dles	282
(d) Characterisric classes	284
6.6 A couple of items	285
(a) Triviality of the cohomology of the Weil algebra	285
(b) Chern-Simons forms	287

CONTENTS	X1
(c) Characteristic numbers	225
Summary	228
Exercises	229
Chapter 6 Fiber Bundles and Characteristic Classes	231
6.1 Fiber bundle and principal bundle	231
(a) Fiber bundle	231
(b) Structure group	233
(c) Principal bundle	236
(d) The classification of fiber bundles and character-	
istic classes	238
(e) Examples of fiber bundles	239
6.2 S^1 bundles and Euler classes	240
(a) S^1 bundle	241
(b) Euler class of an S^1 bundle	241
(c) The classification of S^1 bundles	246
(d) Defining the Euler class for an S^1 bundle by using	2 m
differential forms	249
(e) The primary obstruction class and the Euler class	
of the sphere bundle	254
(f) Vector fields on a manifold and Hopf index theo-	
rem	- 255
6.3 Connections	257
(a) Connections in general fiber bundles	257
(b) Connections in principal bundles	260
(c) Differential form representation of a connection in	
a principal bundle	262
6.4 Curvature	265
(a) Curvature form	265
(b) Weil algebra	268
(c) Exterior differentiation of the Weil algebra	270
6.5 Characteristic classes	275
(a) Weil homomorphism	275
(b) Invariant polynomials for Lie groups	279
(c) Connections for vector bundles and principal bun-	
dles	282
(d) Characterisric classes	284
6.6 A couple of items	285
(a) Triviality of the cohomology of the Weil algebra	285
(b) Chern-Simons forms	287

(c) Flat bundles and holonomy homomorphisms	287
Summary	291
Exercises	292
Perspectives	295
Answers to Exercises	299
Chapter 1	299
Chapter 2	302
Chapter 3	305
Chapter 4	308
Chapter 5	310
Chapter 6	311
References	315
Index	317