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Since the times of Gauss, Riemann, and Poincaré, one of the 
principal goals of the study of manifolds has been to relate local 
analytic properties of a manifold with its global topological prop
erties. Among the high points on this route are the Gauss-Bonnet 
formula, the de Rham complex, and the Hodge theorem; these 
results show, in particular, that the central tool in reaching the 
main goal of global analysis is the theory of differential forms.
This book is a comprehensive introduction to differential forms. 
It begins with a quick presentation of the notion of differentiable 
manifolds and then develops basic properties of differential forms 
as well as fundamental results about them, such as the de Rham 
and Frobenius theorems. The second half of the book is devoted 
to more advanced material, including Laplacians and harmonic 
forms on manifolds, the concepts of vector bundles and fiber 
bundles, and the theory of characteristic classes. Among the less 
traditional topics treated in the book is a detailed description of 
the Chern-Weil theory.
With minimal prerequisites, the book can serve as a textbook for 
an advanced undergraduate or a graduate course in differential 
geometry.
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