Table of Conten

P A, ettt

I O U G IO, ... e e e e

Part 1. Building an Architecture to Support Domain Modeling

L Domain MOdeling.......ooooiiiiiiii
What Is a Domain Model?
Exploring the Domain Language
Unit Testing Domain Models
Dataclasses Are Great for Value Objects
Value Objects and Entities
Not Everything Has to Be an Object: A Domain Service Function
Pythons Magic Methods Let Us Use Our Models with Idiomatic Python
Exceptions Can Express Domain Concepts Too

2. REPOSILONY PAIEIN....vviiitieiiiic s
Persisting Our Domain Model
Some Pseudocode: What Are We Going to Need?
Applying the DIP to Data Access
Reminder: Our Model
The “Normal” ORM Way: Model Depends on ORM
Inverting the Dependency: ORM Depends on Model
Introducing the Repository Pattern
The Repository in the Abstract
What Is the Trade-Off?
Building a Fake Repository for Tests Is Now Trivial!

(s

10
15
17
19
20
20

23
24
24
25
26
27
28
31
32
33
37



What Is a Port and What Is an Adapter, in Python?
Wrap-Up

. ABrief Interlude: On Coupling and ABStractions.............ccoovvvvvvviiineiiinnnn,

Abstracting State Aids Testability

Choosing the Right Abstraction(s)

Implementing Our Chosen Abstractions
Testing Edge to Edge with Fakes and Dependency Injection
Why Not Just Patch It Out?

Wrap-Up

. Our First Use Case: Flask APl and Service Layer...........ccoovvvviiviviiiiiiiinnninnns

Connecting Our Application to the Real World

A First End-to-End Test

The Straightforward Implementation

Error Conditions That Require Database Checks

Introducing a Service Layer, and Using FakeRepository to Unit Test It
A Typical Service Function

Why Is Everything Called a Service?

Putting Things in Folders to See Where It All Belongs

Wrap-Up
The DIP in Action

. TDDin High Gear and Low Gear..................covvveenn,

How Is Our Test Pyramid Looking?

Should Domain Layer Tests Move to the Service Layer?

On Deciding What Kind of Tests to Write

High and Low Gear

Fully Decoupling the Service-Layer Tests from the Domain
Mitigation: Keep All Domain Dependencies in Fixture Functions
Adding a Missing Service

Carrying the Improvement Through to the E2E Tests

Wrap-Up

C UNIE O WOIK Pt BrN. e e

The Unit of Work Collaborates with the Repository
Test-Driving a UoW with Integration Tests
Unit of Work and Its Context Manager
The Real Unit of Work Uses SQLAIchemy Sessions
Fake Unit of Work for Testing
Using the UoW in the Service Layer
Explicit Tests for Commit/Rollback Behavior

1
12
12
73
74
75
76
76
78
79

...... 81

83

85
86
87
88
89



Explicit Versus Implicit Commits 0
Examples: Using UoW to Group Multiple Operations into an Atomic Unit a1

Example 1: Reallocate a1
Example 2. Change Batch Quantity 91
Tidying Up the Integration Tests 92
Wrap-Up 93
7. Aggregates and Consistency BoUNGAries........cccvvviivvvviiiiriiiiiiiecir e 95
Why Not Just Run Everything in a Spreadsheet? 96
Invariants, Constraints, and Consistency 96
Invariants, Concurrency, and Locks 97
What Is an Aggregate? 98
Choosing an Aggregate 99
One Aggregate = One Repository 102
What About Performance? 104
Optimistic Concurrency with Version Numbers 105
Implementation Options for Version Numbers 107
Testing for Our Data Integrity Rules 109
Enforcing Concurrency Rules by Using Database Transaction
Isolation Levels 110
Pessimistic Concurrency Control Example: SELECT FOR UPDATE 111
Wrap-Up 111
Part | Recap 113

Partii.  Event-Driven Architecture

8. Eventsand the MeSSage BUS.........c.ooivviiviiiiiiiiiii s 117
Avoiding Making a Mess 118
First, Lets Avoid Making a Mess of Our Web Controllers 118
And Lets Not Make a Mess of Our Model Either 119
Or the Service Layer! 120
Single Responsibility Principle 120
All Aboard the Message Bus! 121
The Model Records Events 121
Events Are Simple Dataclasses 121
The Model Raises Events 122
The Message Bus Maps Events to Handlers 123
Option 1 The Service Layer Takes Events from the Model and Puts Them on
the Message Bus 124
Option 2. The Service Layer Raises Its Own Events 125

Option 3: The UoW Publishes Events to the Message Bus 126



10.

11.

12.

Wrap-Up
t

Going to Town on the Message BUS.........covvviiriviiiiniiiisinesiies e

A New Requirement Leads Us to a New Architecture

Imagining an Architecture Change: Everything Will Be an Event Handler

Refactoring Service Functions to Message Handlers
The Message Bus Now Collects Events from the UoW
Our Tests Are All Written in Terms of Events Too
A Temporary Ugly Hack: The Message Bus Has to Return Results
Modifying Our API to Work with Events
Implementing Our New Requirement
Our New Event
Test-Driving a New Handler
Implementation
A New Method on the Domain Model

Optionally: Unit Testing Event Handlers in Isolation with a Fake Message

Bus

Wrap-Up
What Have We Achieved?
Why Have We Achieved?

Commands and Command Handler..........oooviveeii e,

Commands and Events

Differences in Exception Handling

Discussion: Events, Commands, and Error Handling
Recovering from Errors Synchronously

Wrap-Up

Event-Driven Architecture: Using Events to Integrate Microservices.................

Distributed Ball of Mud, and Thinking in Nouns
Error Handling in Distributed Systems
The Alternative: Temporal Decoupling Using Asynchronous Messaging
Using a Redis Pub/Sub Channel for Integration
Test-Driving It All Using an End-to-End Test
Redis Is Another Thin Adapter Around Our Message Bus
Our New Outgoing Event
Internal Versus External Events
Wrap-Up

Command-Query Responsibility Segregation (CQRS)............coovvivvviiiiiniiinnn,

Domain Models Are for Writing
Most Users Arent Going to Buy Your Furniture

130

133
135
136
137
139
141
141
142
143
143
144
145
146

147
149
150
150

151
151
153
155
158
160



Post/Redirect/Get and CQS 179

Hold On to Your Lunch, Folb 181
Testing CQRS Views 182
“Obvious” Alternative 1. Using the Existing Repository 182
Your Domain Model Is Not Optimized for Read Operations 183
“Obvious” Alternative 2: Using the ORM 184
SELECT N+1 and Other Performance Considerations 184
Time to Completely Jump the Shark 185
Updating a Read Model Table Using an Event Handler 186
Changing Our Read Model Implementation Is Easy 188
Wrap-Up 189
13. Dependency Injection (and BOOISLrapping).......cccvvvvvveviiriiiiiniiiirieeiieens 191
Implicit Versus Explicit Dependencies 193
Aren't Explicit Dependencies Totally Weird and Java-y? 194
Preparing Handlers: Manual DI with Closures and Partials 196
An Alternative Using Classes 198
A Bootstrap Script 199
Message Bus Is Given Handlers at Runtime 201
Using Bootstrap in Our Entrypoints 203
Initializing DI in Our Tests 204
Building an Adapter “Properly”: A Worked Example 205
Define the Abstract and Concrete Implementations 206
Make a Fake Version for Your Tests 206
Figure Out How to Integration Test the Real Thing 207
Wrap-Up 209
EDIOGUE. .o 211
A Summary Diagram and Table.........ccocooiiiioiii 229
B. ATemplate Project STTUCKUE. ... vvvve i 231
C. Swapping Outthe Infrastructure: Do Everything with CSVS...........covvviiiniiiininn, 239
D. Repository and Unit of Work Patterns with Django........ccc.cccovvvvveiiineiiiinnenn, 245
E ValAation........coooiii 255

Index 265



