FOREWORDxvACKNOWLEDGEMENTSxviiPREFACExixSYMBOLSxxiiABBREVATIONSxxiiiINTRODUCTIONxxvPART IBATTERIES WITH AQUEOUS ELECTROLYTES1

1 GENERAL ASPECTS

1.1	Definition, 3
1.2	Current-Producing Chemical Reaction, 3
1.3	Classification, 5
1.4	Thermodynamic Aspects, 6
1.5	Historical Development, 8
1.6	Nomenclature, 9
	Reviews and Monographs, 10
	Prospecta of Developmentationality constrain here outcompout A.o

2 MAIN BATTERY TYPES

- 2.1 Electrochemical Systems, 11
- 2.2 Leclanché (Zinc-Carbon) Batteries, 12
- 2.3 The Zinc Electrode in Alkaline Solutions, 14
- 2.4 Alkaline Manganese-Zinc Batteries, 14
- 2.5 Lead Acid Batteries, 17
- 2.6 Alkaline Nickel Storage Batteries, 20
- 2.7 Silver-Zinc Batteries, 23 References, 24 Monographs and Reviews, 25

3 PERFORMANCE

- 3.1 Electrical Characteristics of Batteries, 27
- 3.2 Electrical Characteristics of Storage Batteries, 30
- 3.3 Comparative Characteristics, 30
- 3.4 **Operational Characteristics**, 31 References, 32

4 **MISCELLANEOUS BATTERIES**

- 4.1 Mercury-Zinc Batteries, 33
- 4.2 Compound Batteries, 34
- 4.3 Batteries with Water as Reactant, 37
- 4.4 Standard Cells, 38
- 4.5 Reserve Batteries, 39 Reference, 41 Reviews and Monographs, 41

5 DESIGN AND TECHNOLOGY

- 5.1 Balance in Batteries, 43
- 5.2 Scale Factors, 44
- 5.3. Separators, 44
- 5.4 Sealing, 46
- 5.5 Ohmic Losses, 47
- 5.6 Thermal Processes in Batteries, 48

APPLICATIONS OF BATTERIES 6

- 6.1 Automotive Equipment Starter and Auxiliary Batteries, 51
- 6.2 Traction Batteries, 52
- 6.3 Stationary Batteries, 53
- Domestic and Portable Systems, 53 6.4
- 6.5 Special Applications, 54

27

33

51

7	OPE	RATIONAL PROBLEMS	55
	7.1	Discharge and Maintenance of Primary Batteries, 55	
	7.2	Maintenance of Storage Batteries, 56	
	7.3	General Aspects of Battery Maintenance, 60	
8	OUT	LOOK FOR BATTERIES WITH AQUEOUS	
		CTROLYTE	63
		References, 64	
PAI	RTII	BATTERIES WITH NONAQUEOUS ELECTROLYTES	65
9	DIFF	FERENT KINDS OF ELECTROLYTES	67
	9.1	Electrolytes Based on Aprotic Nonaqueous Solutions, 68	
	9.2	Ionically Conducting Molten Salts, 69	
	9.3	Ionically Conducting Solid Electrolytes, 70	
		References, 72	
10	INSE	CRTION COMPOUNDS	73
		Monographs and Reviews, 76	
11	PRIN	ARY LITHIUM BATTERIES	77
	11.1	General Information: Brief History, 77	
	11.2	Current-Producing and Other Processes in Primary Power Sources	, 79
	11.3	Design of Primary Lithium Cells, 81	
	11.4	Fundamentals of the Technology of Manufacturing of Lithium	
		Primary Cells, 82	
	11.5	Electric Characteristics of Lithium Cells, 82	
	11.6	Operational Characteristics of Lithium Cells, 83	
	11.7	Features of Primary Lithium Cells of Different Electrochemical	
		Systems, 84	
		Monographs, 89	
12	LITH	HUM ION BATTERIES	91
	12.1	General Information: Brief History, 91	
	12.2	Current-Producing and Other Processes in Lithium Ion Batteries,	93
	12.3	Design and Technology of Lithium Ion Batteries, 96	
	12.4	Electric Characteristics, Performance, and Other Characteristics of Lithium Ion Batteries, 98	
	12.5	Prospects of Development of Lithium Ion Batteries, 99	
		Monographs, 101	

ix

13	LIT	HIUM ION BATTERIES: WHAT NEXT?	103		
	13.1 13.2 13.3	Lithium–Air Batteries, 103 Lithium–Sulfur Batteries, 106			
14	SOL	ID-STATE BATTERIES			
	14.1 14.2	Low-Temperature Miniature Batteries with Solid Electrolytes, 1 Sulfur–Sodium Storage Batteries, 112 Monographs and Reviews, 115	11		
15	BAT	TERIES WITH MOLTEN SALT ELECTROLYTES	117		
	15.1 15.2	Storage Batteries, 117 Reserve-Type Thermal Batteries, 120 References, 122			
PA	RT III	FUEL CELLS	123		
16	GEN	ERAL ASPECTS	125		
	16.1	Thermodynamic Aspects, 125	125		
	16.2	Schematic Layout of Fuel-Cell Units, 128			
	16.3	Types of Fuel Cells, 131			
	16.4 16.5	Layout of a Real Fuel Cell: The Hydrogen–Oxygen Fuel Cell with Liquid Electrolyte, 132 Basic Parameters of Fuel Celle, 134			
	10.5	Basic Parameters of Fuel Cells, 134 Reference, 140			
		Monographs, 140			
17	THE	DEVELOPMENT OF FUEL CELLS	141		
	17.1		141		
	17.2	The Period prior to 1894, 141 The Period from 1894 to 1960, 143			
	17.3	The Period from 1960 to the 1990s, 144			
	17.4	The Period after the 1990s, 148	12		
		References, 149			
		Monographs and Reviews, 150			
	PROTON-EXCHANGE MEMBRANE FUEL CELLS (PEMFC) 15				
	18.1	The History of PEMFC, 151			
	18.2	Standard PEMFC Version of the 1990s, 154			
	18.3	Operating Conditions of PEMFC, 156			

- 18.4 Special Features of PEMFC Operation, 157
- 18.5 Platinum Catalyst Poisoning by Traces of Co in the Hydrogen, 159
- 18.6 Commercial Activities in Relation to PEMFC, 161
- 18.7 Future Development of PEMFCs, 162
- 18.8 Elevated-Temperature PEMFCs (ET-PEMFCs), 167
 References, 170
 Reviews, 170

19 DIRECT LIQUID FUEL CELLS WITH GASEOUS, LIQUID, AND/OR SOLID REAGENTS

- 19.1 Current-Producing Reactions and Thermodynamic Parameters, 172
- 19.2 Anodic Oxidation of Methanol, 172
- 19.3 Use of Platinum–Ruthenium Catalysts for Methanol Oxidation, 173
- 19.4 Milestones in DMFC Development, 173
- 19.5 Membrane Penetration by Methanol (Methanol Crossover), 174
- 19.6 Varieties of DMFC, 176
- 19.7 Special Operating Features of DMFC, 178
- 19.8 Practical Prototypes of DMFC and Their Features, 180
- 19.9 The Problems to be Solved in Future DMFC, 181
- 19.10 Direct Liquid Fuel Cells (DLFC), 183Reference, 188Reviews, 188

20 MOLTEN CARBONATE FUEL CELLS (MCFC)

- 20.1 Special Features of High-Temperature Fuel Cells, 191
- 20.2 The Structure of Hydrogen–Oxygen MCFC, 192
- 20.3 MCFC with Internal Fuel Reforming, 194
- 20.4 The Development of MCFC Work, 195
- 20.5 The Lifetime of MCFCs, 196
 References, 198
 Reviews and Monographs, 198

21 SOLID OXIDE FUEL CELLS (SOFCs)

- 21.1 Schematic Design of a Conventional SOFC, 200
- 21.2 Tubular SOFCs, 201
- 21.3 Planar SOFCs, 202
- 21.4 Varieties of SOFCs, 205
- 21.5 The Utilization of Natural Fuels in SOFCs, 206
- 21.6 Interim-Temperature SOFCs (ITSOFCs), 208
- 21.7 Low-Temperature SOFCs (LT-SOFC), 211
- 21.8 Factors Influencing the Lifetime of SOFCs, 211

171

199

References, 212 Monographs and Reviews, 212

22 OTHER TYPES OF FUEL CELLS

- 22.1 Phosphoric Acid Fuel Cells (PAFCs), 213
- 22.2 Redox Flow Fuel Cells, 218
- 22.3 Biological Fuel Cells, 221
- 22.4 Direct Carbon Fuel Cells (DCFCs), 224
 References, 227
 Monographs, 227

23 ALKALINE FUEL CELLS (AFCs)

- 23.1 Hydrogen-Oxygen AFCs, 230
- 23.2 Problems in the AFC Field, 233
- 23.3 The Present State and Future Prospects of AFC Work, 235
- 23.4 Anion-Exchange (Hydroxyl Ion Conducting) Membranes, 236
- 23.5 Methanol Fuel Cell with an Invariant Alkaline Electrolyte, 237
 References, 237
 Monograph, 237

24 APPLICATIONS OF FUEL CELLS

- 24.1 Large Stationary Power Plants, 239
- 24.2 Small Stationary Power Units, 242
- 24.3 Fuel Cells for Transport Applications, 243
- 24.4 Portables, 248
- 24.5 Military Applications, 250 References, 250

25 OUTLOOK FOR FUEL CELLS

- 25.1 Alternating Periods of Hope and Disappointment—Forever? 252
- 25.2 Development of Electrocatalysis, 252
- 25.3 "Ideal Fuel Cells" Do Exist, 253
- 25.4 Expected Future Situation with Fuel Cells, 255
 Reference, 256
 Monographs, 256

PART IV SUPERCAPACITORS

26 GENERAL ASPECTS

26.1 Electrolytic Capacitors, 259 References, 261 213

251

257

259

239

27 ELECTROCHEMICAL SUPERCAPACITORS WITH CARBON ELECTRODES

- 27.1 Introduction, 263
- 27.2 Main Properties of Electric Double-Layer Capacitors (EDLC), 264
- 27.3 EDLC Energy Density and Power Density, 267
- 27.4 Fundamentals of EDLC Macrokinetics, 271
- 27.5 Porous Structure and Hydrophilic–Hydrophobic Properties of Highly Dispersed Carbon Electrodes, 272
- 27.6 Effect of Ratio of Ion and Molecule Sizes and Pore Sizes, 275
- 27.7 Effect of Functional Groups on EDLC Characteristics, 277
- 27.8 Electrolytes Used in EDLC, 279
- 27.9 Impedance of Highly Dispersed Carbon Electrodes, 283
- 27.10 Nanoporous Carbons Obtained Using Various Techniques, 286
- 27.11 High-Frequency Carbon Supercapacitors, 303
- 27.12 Self-Discharge of Carbon Electrodes and Supercapacitors, 306
- 27.13 Processes of EDLC Degradation (AGING), 311
 References, 313
 Monograph and Reviews, 313

28 PSEUDOCAPACITOR ELECTRODES AND SUPERCAPACITORS

- 28.1 Electrodes Based on Inorganic Salts of Transition Metals, 315
- 28.2 Electrodes Based on Electron-Conducting Polymers (ECPs), 322
- 28.3 Redox Capacitors Based on Organic Monomers, 333
- 28.4 Lithium-Cation-Exchange Capacitors, 335 References, 337 Monograph and Reviews, 337

29 HYBRID (ASYMMETRIC) SUPERCAPACITORS (HSCs)

- 29.1 HSCs of MeO_x/C Types, 339
- 29.2 HSCs of ECP/C Type, 343 References, 344 Review, 344

30 COMPARISON OF CHARACTERISTICS OF SUPERCAPACITORS AND OTHER ELECTROCHEMICAL DEVICES. CHARACTERISTICS OF COMMERCIAL SUPERCAPACITORS 345

Reference, 350 Reviews, 350

31 PROSPECTS OF ELECTROCHEMICAL SUPERCAPACITORS 351

263

315

ELECTROCHEMICAL ASPECTS OF SOLAR ENERGY 32 **CONVERSION** 355 Photoelectrochemical Phenomena, 355 32.1 Photoelectrochemical Devices, 356 32.2 Photoexcitation of Metals (Electron Photoemission into 32.3 Solutions), 356 Behavior of Illuminated Semiconductors, 357 32.4 Semiconductor Solar Batteries (SC-SB), 358 32.5 Dye-Sensitized Solar Cells (DSSC), 360 32.6 References, 363 Reviews and Monographs, 363 Impedance of Highly Disperses Dated and Highlad 283 IAMALA Nanoporous Carbons Obtained Using Various Techniques, 286 **AUTHOR INDEX** 365 SUBJECT INDEX 369