Contents

From the Series Editors	vii
Series Editors	xv
Preface: A Brief Introduction to the Algae	xxv
About the Editors	xxvii
Contributors	xxxi
Author Index	XXXV
Part I Introductory Chapters	
1 Recent Advances in the Photosynthesis of Cyanobacteria and Eukaryotic Algae Anthony W. D. Larkum, Arthur R. Grossman, and John A. Raven	3–9
 I. Algal Systematics II. Cyanobacteria III. Crystal Structures IV. Light Harvesting V. Photoinhibition VI. Dinoflagellates and Coral Bleaching VII. Carbon Uptake and Metabolism (See Chap. 7 & 8) VIII. Water-Water Cycles (See Chap. 8) References 	4 4 5 6 6 6 7 8
2 The Algal Tree of Life from a Genomics Perspective Debashish Bhattacharya and Dana C. Price	11–24
 Introduction Why Inferring the Algal Tree of Life Is Non-trivial Examples of Reticulate Behavior Among Algal Genes From Designer Datasets to Whole Genomes Conclusions Beferences 	11 12 14 18 20 22

Part	II Molecular Genetics of Algae	
3	Chlorophyll-Xanthophyll Antenna Complexes: In Between Light Harvesting and Energy Dissipation Christo Schiphorst and Roberto Bassi	27–55
	 Introduction Chromophores The Core Complexes of PSII and PSI Light Harvesting Light Harvesting Antenna Complexes of PSI Fucoxanthin Chlorophyll Binding Proteins Photoprotection Photoprotection Triggers of Quenching Reactions Conclusions References 	27 28 31 32 37 38 40 43 45 45
4	The Dynamics of the Photosynthetic Apparatus in Algae Jean-David Rochaix	57–82
	I. Introduction II. Adaptation to Changes in Light Conditions	57 60
	to Micronutrient Depletion IV. Long Term Response: Changes in Nuclear	69 71
	and Chloroplast Gene Expression V. Conclusions and Perspectives References	74 75
5	Biosynthesis of Chlorophyll and Bilins in Algae Robert D. Willows	83–103
	Introduction	83
	I Diversity of Chlorophylls in Algae	84
	III. Diversity of Bilins in Algae	86
	IV. Overview of Biosynthesis of Bilins and Chlorophylls	80
	V. Biosynthesis of Protoporphyrin IX	2010
	VI. Biosynthesis of Billins from Protoporphymrand random	92
	Of Blin Lyases Nu Biosynthesis of Chlorophylls from Protoporphyrin IX	93
	VIII Synthesis of Chlorophyll b, d and f	96
	IX. Concluding Remarks	97
	Bibliography	91

Par	t III Biochemistry and Physiology of Algae	
6	Chloroplast Ion and Metabolite Transport in Algae Justine Marchand, Parisa Heydarizadeh, Benoît Schoefs, and Cornelia Spetea	107–139
	 Introduction Chloroplast Ion Transport Chloroplast Metabolite Transport Strategies for Identification of Missing Algal Transporters Conclusions and Perspectives 	107 113 119 127 128
7	Structural and Biochemical Features of Carbon Acquisition in Algae John Beardall and John A. Raven	141–160
	 Introduction II. Carbon Assimilation III. Occurrence of CCMs IV. Mechanisms of CCMs Versus Diffusive CO₂ Fluxes V. Structural Aspects of CO₂ Acquisition References 	141 142 145 146 151 153
8	Light-Driven Oxygen Consumption in the Water-Water Cycles and Photorespiration, and Light Stimulated Mitochondrial Respiration John A. Raven, John Beardall, and Antonietta Quigg	161–178
	 Introduction II. The Evidence of Light-Dependent O₂ Uptake III. Possible Mechanisms of Light-Driven O₂ Uptake IV. Functions of the Light-Driven O₂ Uptake Processes V. Conclusions References 	162 162 163 169 171 171
9	The Algal Pyrenoid Moritz T. Meyer, Myriam M. M. Goudet, and Howard Griffiths	179–203
	 Introduction Pyrenoid Structure & Function: Lessons from <i>Chlamydomonas</i> When, Where, How and Whither: From Paleo-Origins to Future Synthetic Biology Beferences 	179 188 194 196
	Energy Storage and Regulation in Oxyganic	

Par	t IV Light-Harvesting Systems in Algae	
10	Light-Harvesting in Cyanobacteria and Eukaryotic Algae:	007 260
	An Overview	207-200
	Anthony W. D. Larkum	000
	I. Introduction	200
	II. The Photosynthetic Pigments of Cyariobacteria	210
	and Eukaryolic Algae	222
	IV. The Need for Light Harvesting Antennas	231
	V. Light-Harvesting Antennas in Cyanobacteria	232
	and Eukaryotic Algae	18 23
	VI. Control of Energy Supply to Por and Point State	233
	VII Non-photochemical Quenching	242
	VIII. Reactive Oxygen Species (ROS) and Other	246
	Photoprotective Mechanisms	251
	References	
11	Light Harvesting by Long-Wavelength Chlorophyll Forms	
181	(Red Forms) in Algae: Focus on their Presence,	061 007
	Distribution and Function	201-251
	Stefano Santabarbara, Anna Paola Casazza, Erica Belgio,	
	Radek Kaňa, and Ondřej Prásil	
	I. Long Wavelength ("Red") Chlorophyll a Forms: Historical	262
	Perspective on Their Discovery and General Overview	LOL
	II. Long Wavelength Chlorophyll Forms Associated	264
	III Long Wavelength Chlorophyll Forms Associated	070
	to Photosystem II	270
	IV. Survey of Cyanobacterial and Algal Species for	274
	the Presence of Long-Wavelength Chlorophyll Forms on the	0
	V. Effect of Long Wavelength Onlorophymeterne Photochemical Quantum Efficiency	278
	VI. Concluding Remarks	289
	References	291
10	Diversity in Photoprotection and Energy Balancing	
12	in Terrestrial and Aquatic Phototrophs	299-327
	Atsuko Kanazawa, Peter Neofotis, Geoffry A. Davis,	
	Nicholas Fisher, and David M. Kramer	
		299
	I Energy Storage and Regulation in Oxygenic	
	Photosynthesis	300
	III. The pmf Paradigm for Regulation of the Photosynthetic	302
	Light Reactions	303
	IV. The Need to Coordinate qe and thorosynthesis a similar	

Contents

	V The Critical Need to Balance the Chloroplast	
	Fineray Budget	303
	VI Begulation of CEF	306
	VII. Modulation of <i>pmf</i> Feedback Regulation and Its Impact	
	on Energy Balancing	307
	VIII. How Diverse Photoprotective Mechanisms Challenge	
	the pmf Paradigm and Open Up New Questions	311
	IX. Coping with ATP Excess or NADPH Deficit	314
	X. Conclusions and Perspective	317
	References	318
13	Photoinhibition of Photosystem II in Phytoplankton:	
	Processes and Patterns	329-365
	Douglas A Campbell and João Serôdio	
	Bougias A. Campson and code coreare	000
	I. Introduction: Scope & Terms	329
	II. Mechanisms of Photoinactivation	330
	III. Measurement and Parameterization of PSII Photoinactivation	1 222
	and Counteracting PSII Repair	332
	IV. Patterns of Photoinactivation and Repair	3/2
	Across Phytopiankton	357
	V. Summary	359
	Reierences	000
14	to Photosystems: State Transitions and OCP-Related Non-Photochemical Quenching Diana Kirilovsky	367–396
	I Introduction	367
	II The Phycobilisome	368
	III. The OCP-Related NPQ Mechanism	370
	IV. Cvanobacterial State Transitions	381
	V. Perspectives and Conclusions	387
	References	388
15	Coherent Processes in Photosynthetic Energy Transport	
1.5	and Transduction	397-439
	Harry W. Rathbone, Paul M. G. Curmi, and Jeffrey A. Davis	weiter ans
	I Introduction	398
	II Quantum Behaviour, Coherence and Spectroscopy	400
	III Diversity of Biological Light Harvesting	408
	IV. Deeper Exploration of Energy Transport in Biological	
	Systems	414
	V. Summary and Conclusions	432
	VI. New Horizons	434
	VII. The Wrong Question: "Does Evolution Select	
	for Non-trivial Quantum Effects?"	435
	References	435

xxiii

 Introduction Genes Coding for FCP Polypeptides Supramolecular Organisation of FCP Complex Arrangement of Photosynthetic Complexes of in the Thylakoid Membrane Pigmentation of FCPs and Excitation Energy 1 VI. FCPs in Photoprotection VII. Regulation of FCP Expression VIII. Open Questions References A Review: The Role of Reactive Oxygen Species Introduction Introduction Review of the Experimental Evidence for React Oxygen Species in Corals and Symbiodinium (Symbiodinium (Symbiodinium)) 	44 442 Vices 443 Diatoms 444 Transfer 446 448 450 452 452 452 452 452 452 452
 II. Genes Coding for FCP Polypeptides III. Supramolecular Organisation of FCP Complet IV. Arrangement of Photosynthetic Complexes of in the Thylakoid Membrane V. Pigmentation of FCPs and Excitation Energy 1 VI. FCPs in Photoprotection VII. Regulation of FCP Expression VIII. Open Questions References 7 A Review: The Role of Reactive Oxygen Species in Mass Coral Bleaching Milán Szabó, Anthony W. D. Larkum, and Imre Vas I. Introduction II. Review of the Experimental Evidence for React Oxygen Species in Corals and Symbiodinium	442 A42 Diatoms 444 Transfer 446 448 450 452 452 452 452 452 452 452
 III. Supramolecular Organisation of FCP Complet IV. Arrangement of Photosynthetic Complexes of in the Thylakoid Membrane V. Pigmentation of FCPs and Excitation Energy 1 VI. FCPs in Photoprotection VII. Regulation of FCP Expression VIII. Open Questions References 7 A Review: The Role of Reactive Oxygen Species in Mass Coral Bleaching Milán Szabó, Anthony W. D. Larkum, and Imre Vas Introduction II. Review of the Experimental Evidence for React Oxygen Species in Corals and Symbiodinium (Symbiodinius) 	xes 443 Diatoms 444 Transfer 446 448 450 452 452 459–488 SS 460
 IV. Arrangement of Photosynthetic Complexes of in the Thylakoid Membrane V. Pigmentation of FCPs and Excitation Energy 1 VI. FCPs in Photoprotection VII. Regulation of FCP Expression VIII. Open Questions References A Review: The Role of Reactive Oxygen Species in Mass Coral Bleaching Milán Szabó, Anthony W. D. Larkum, and Imre Vas I. Introduction II. Review of the Experimental Evidence for React Oxygen Species in Corals and Symbiodinium (Symbiodiniumation)	Diatoms 444 Transfer 446 448 450 452 452 452 452 55 460
 in the Thylakoid Membrane V. Pigmentation of FCPs and Excitation Energy 1 VI. FCPs in Photoprotection VII. Regulation of FCP Expression VIII. Open Questions References A Review: The Role of Reactive Oxygen Species in Mass Coral Bleaching Milán Szabó, Anthony W. D. Larkum, and Imre Vas I. Introduction II. Review of the Experimental Evidence for React Oxygen Species in Corals and Symbiodinium (Symbiodinium)	444 Transfer 446 448 450 452 452 459–488 SS 460
 V. Pigmentation of FCPs and Excitation Energy 1 VI. FCPs in Photoprotection VII. Regulation of FCP Expression VIII. Open Questions References A Review: The Role of Reactive Oxygen Species in Mass Coral Bleaching Milán Szabó, Anthony W. D. Larkum, and Imre Vas I. Introduction II. Review of the Experimental Evidence for React Oxygen Species in Corals and Symbiodinium (Symbiodinium)	Transfer 446 448 450 452 452 459–488 SS 460
 VI. FCPs in Photoprotection VII. Regulation of FCP Expression VIII. Open Questions References A Review: The Role of Reactive Oxygen Species in Mass Coral Bleaching Milán Szabó, Anthony W. D. Larkum, and Imre Vas I. Introduction II. Review of the Experimental Evidence for React Oxygen Species in Corals and Symbiodinium (Symbiodinicases)	448 450 452 452 459–488 SS 460
 VII. Regulation of FCP Expression VIII. Open Questions References A Review: The Role of Reactive Oxygen Species in Mass Coral Bleaching Milán Szabó, Anthony W. D. Larkum, and Imre Vas I. Introduction II. Review of the Experimental Evidence for React Oxygen Species in Corals and Symbiodinium 	450 452 452 459–488 SS 460
VIII. Open Questions References A Review: The Role of Reactive Oxygen Species in Mass Coral Bleaching Milán Szabó, Anthony W. D. Larkum, and Imre Vas I. Introduction II. Review of the Experimental Evidence for React Oxygen Species in Corals and Symbiodinium	452 452 459–488 SS 460
A Review: The Role of Reactive Oxygen Species in Mass Coral Bleaching Milán Szabó, Anthony W. D. Larkum, and Imre Vas I. Introduction II. Review of the Experimental Evidence for React Oxygen Species in Corals and Symbiodinium	452 459–488 SS 460
A Review: The Role of Reactive Oxygen Species in Mass Coral Bleaching Milán Szabó, Anthony W. D. Larkum, and Imre Vas I. Introduction II. Review of the Experimental Evidence for React Oxygen Species in Corals and Symbiodinium	459–488 SS 460
I. Introduction II. Review of the Experimental Evidence for React Oxygen Species in Corals and Symbiodinium	460
II. Review of the Experimental Evidence for React Oxygen Species in Corals and Symbiodinium	
(Symbiodiniacaca)	tive
(Symbiodimaceae)	464
III. Molecular Physiology and Bioinformatics	468
IV. The Detection and Role of Singlet Oxygen	469
V. Symbiosis and Exocytosis in Corals	471
VI. The Possible Mechanisms of Coral Bleaching	473
VII. Bleaching in Anemones	479
VIII. Conclusions	480
References	482
prrection to: Photosynthesis in Algae: Biochemical	

Subject Index

xxiv

489-514