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Units of All Living Organisms %
Cellular Dimensions Are Limited by Diffusion 2]
Organisms Belong to Three Distinct
Domains of Life 3
Organisms Differ Widely in Their Sources
of Energy and Biosynthetic Precursors 3
Bacterial and Archaeal Cells Share Common
Features but Differ in Important Ways 5
Eukaryotic Cells Have a Variety of Membranous
Organelles, Which Can Be Isolated for Study 6
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Cytoskeleton and Is Highly Dynamic 6
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In Vitro Studies May Overlook Important
Interactions among Molecules 9
1.2 Chemical Foundations 10
Biomolecules Are Compounds of Carbon
with a Variety of Functional Groups 10
Cells Contain a Universal Set of Small Molecules i
Macromolecules Are the Major Constituents
of Cells 12
CEZEE) Molecular Weight, Molecular Mass,
and Their Correct Units 13
Three-Dimensional Structure Is Described by
Configuration and Conformation 14
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In Vino, Veritas 17
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Their Surroundings 19
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Creating and Maintaining Order Requires
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Entropy: Things Fall Apart py)
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Reactions 25
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Genetic Continuity Is Vested in Single
DNA Molecules 28
The Structure of DNA Allows Its Replication
and Repair with Near-Perfect Fidelity 28

The Linear Sequence in DNA Encodes Proteins
with Three-Dimensional Structures
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Changes in the Hereditary Instructions
Allow Evolution
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RNA or Related Precursors May Have Been
the First Genes and Catalysts

Biological Evolution Began More Than
Three and a Half Billion Years Ago

The First Cell Probably Used Inorganic Fuels

Eukaryotic Cells Evolved from Simpler
Precursors in Several Stages

Molecular Anatomy Reveals Evolutionary Relationships

Functional Genomics Shows the Allocations
of Genes to Specific Cellular Processes

Genomic Comparisons Have Increasing
Importance in Medicine
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3.2

33

The Henderson-Hasselbalch Equation Relates

pH, PK,, and Buffer Concentration 60
Weak Acids or Bases Buffer Cells and Tissues

against pH Changes 61
Untreated Diabetes Produces Life-Threatening

Acidosis 63

Amino Acids, Peptides, and Proteins 70

Amino Acids 70
Amino Acids Share Common Structural Features 7l
The Amino Acid Residues in Proteins Are

L Stereoisomers 72
Amino Acids Can Be Classified by R Group 73
Absorption of Light by Molecules:

The Lambert-Beer Law 75
Uncommon Amino Acids Also Have

Important Functions 76
Amino Acids Can Act as Acids and Bases 76
Amino Acids Differ in Their Acid-Base Properties 79
Peptides and Proteins 80
Peptides Are Chains of Amino Acids 81
Peptides Can Be Distinguished by

Their Ionization Behavior 81

Biologically Active Peptides and Polypeptides
Occur in a Vast Range of Sizes and Compositions 82
Some Proteins Contain Chemical Groups

Other Than Amino Acids 83
Working with Proteins 83
Proteins Can Be Separated and Purified 84
Proteins Can Be Separated and Characterized

by Electrophoresis 87
Unseparated Proteins Are Detected and

Quantified Based on Their Functions 89

3.4 The Structure of Proteins:

4.1

Primary Structure 90
The Function of a Protein Depends on Its

Amino Acid Sequence 91
Protein Structure Is Studied Using Methods

That Exploit Protein Chemistry 92

Mass Spectrometry Provides Information
on Molecular Mass, Amino Acid Sequence,

and Entire Proteomes 93
Small Peptides and Proteins Can Be Chemically

Synthesized 95
Amino Acid Sequences Provide Important

Biochemical Information 96
Protein Sequences Help Elucidate the History

of Life on Earth 96

Consensus Sequences and Sequence Logos 98

The Three-Dimensional Structure

of Proteins 106
Overview of Protein Structure 107
A Protein’s Conformation Is Stabilized

Largely by Weak Interactions 107

Contents
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Knowing the Right Hand from the Left

Amino Acid Sequence Affects Stability
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