aviliane optimits

-	References		
C	ontents		
59			
	Fundamentals of rock		
Ackr	owledgments		xix
Prefe	rence to the Fifth Edition		xxi
Prefa	ce to the Fourth Edition		xxiii
Prefa	ce to the Third Edition		xxv
Prefa	ce to the Second Edition		xxvii
Prefa	ce to the First Edition		xxix
Abou	It the Author		xxxi
	Capillary PressultO eburD		
	Capillary Hysteresis	Crude Oil Density	
1.	Fundamentals of Rese	ervoir Fluid Behavior	1
103		Crude Oil Viscosity	195
	Classification of Reservoir	s and Reservoir Fluids	191
	Pressure-Temperature Diag	ram is used on galaxius of o abortlaw	1
	Oil Reservoirs		3
	Gas Reservoirs	Beal's Correlation:	9
	Undefined Petroleum Fract	ions	23
	Problems		26
	References		26
2.	Reservoir-Fluid Prope	erties	29
	Properties of Natural Case	Material Company in Water	20
	Properties of Natural Cases	Decisioner Sourcement Compressionery 65	30
	Apparent Molecular Weigh	References	31
	Standard Volume	C33113 191391	32
	Density		32
	Specific Volume		33
	Specific Gravity		33
	Behavior of Real Gases		35
	Case 1: Natural Gas System	Differential Liberation (Venderstein) an	40
	Case 2: Gas-Condensate Sy	ystems	40
	Effect of Nonhydrocarbon	Components on the Z-factor	42
	Nonhydrocarbon Adjustme	ent Methods	43
	The Wichert-Aziz Correction	on Method	43
	The Carr-Kobayashi-Burrow	ws Correction Method	45
	Correction for High-Mole	cular Weight Gases	46
	Wyllie and Gardner Correl	Correcting the Separator Tests Data, notic	

	Direct Calculation of Compressibility Factors	50
	The Hall-Yarborough Method	50
	The Dranchuk-Abu-Kassem Method	52
	The Dranchuk-Purvis-Robinson Method	54
	Compressibility of Natural Gases	54
	Gas Formation Volume Factor	59
	Gas Viscosity	62
	Methods of Calculating the Viscosity of Natural Gases	62
	The Carr-Kobayashi-Burrows Correlation Method	62
	The Lee-Gonzalez-Eakin Method	67
	Properties of Crude Oil Systems	68
	Crude Oil Gravity	68
	Specific Gravity of the Solution Gas	69
	Gas Solubility	70
	Standing's Correlation	71
	Oil Formation Volume Factor	84
	Isothermal Compressibility Coefficient of Crude Oil "c."	89
	Oil Formation Volume Factor for Undersaturated Oils	93
	Crude Oil Density	96
	Total Formation Volume Factor	97
	Crude Oil Viscosity	103
	Mothods of Calculating Viscosity of the Dead Oil	103
	Methods of Calculating the Saturated Oil Viscosity	104
	Methods of Calculating the Viscosity of the Undersaturated Oil	105
	Real/a Correlation:	107
	Bears Correlation:	107
	The Vasquez-Beggs Correlation	110/
	Surrace/Interfacial Tension	110
	Properties of Reservoir water	113
	Water Formation Volume Factor	113
	Water Viscosity	113
	Gas Solubility in Water	114
	Water Isothermal Compressibility	114
	Problems	114
	References	120
3.	Laboratory Analysis of Reservoir Fluids	123
	Composition of the Reservoir Fluid	123
	Constant-Composition Expansion Tests	126
	Differential Liberation (Vaporization) Test	133
	Separator Tests	137
	Adjustment of Differential Liberation Data to Separator Conditions	140
	Extrapolation of Reservoir Fluid Data	143
	Correcting Constant-Composition Expansion Data	145
	Correcting Differential Liberation Data	147
	Correcting Oil Viscosity Data	147
	Correcting the Separator Tests Data	148
	Laboratory Analysis of Gas Condensate Systems	151
	Recombination of Separator Samples	151
		1.11

	Constant-Composition Test	
	Constant-Volume Depletion (CVD) Test	
	Problems	
	References	
	The Protocol And Andrew Relative Permeability Data USING and	
•	Fundamentals of rock properties	
	Routine core analysis tests	
	Special tests	
	Porosity of Compressible Fluids (Caseofistered) flott-balauti	
	Absolute porosity	
	Effective porosity	
	Saturation	
	Average Saturation	
	Wettability	
	Surface and Interfacial Tension	
	Capillary Pressure	
	Capillary Pressure of Reservoir Rocks	
	Capillary Hysteresis	
	Initial Saturation Distribution in a Reservoir	
	Leverett J-Function	
	Converting Laboratory Capillary Pressure Data	
	Permeability	
	The Klinkenberg Effect	
	Averaging Absolute Permeabilities	
	Weighted-Average Permeability	
	Harmonic-Average Permeability	
	Geometric-Average Permeability	
	Absolute Permeability Correlations	
	The Timur Equation	
	The Morris-Biggs Equation	
	Rock Compressibility	
	Net pay thickness	
	Reservoir Heterogeneity	
	Vertical Heterogeneity	
	The Dykstra-Parsons Permeability Variation	
	Lorenz Coefficient L	
	Areal Heterogeneity	
	Reservoir Rock Characterization	
	Reservoir Petrophysical Empirical Correlations	
	Problems	
	References	
	Relative Permeability Concents	
	Relative remetability concepts assist to notsiumuooA is	
	Two-phase Relative Permeability	
	Wyllie and Gardner Correlation	
	Torcaso and Wyllie Correlation	
	Pirson's Correlation	

X	Contents
-	

	Corey's Method	292
	Relative Permeability from Capillary Pressure Data	294
	Relative Permeability from Analytical Equations	296
	Relative Permeability Ratio	303
	Dynamic Pseudo-Relative Permeabilities	305
	Normalization and Averaging Relative Permeability Data	307
	Three-Phase Relative Permeability	313
	Stone's Model I	316
	Stone's Model II	318
	The Hustad-Holt Correlation	318
	Three-Phase Relative Permeability Hysteresis	320
	Carlson Hysteresis Model	325
	Problems	328
	References	328
	References Contelation	
175	Oil Frenation Volume Factor : El 11 El contentation bas	Surface
6.	Fundamentals of Reservoir Fluid Flow	Capillary 331
	Types of Fluids	331
	Incompressible Fluids	332
	Slightly Compressible Fluids	332
	Compressible Fluids	333
	Flow Regimes	333
	Steady-State Flow	334
	Unsteady-State Flow	334
	Pseudosteady-State Flow	335
	Reservoir Geometry	335
	Radial Flow	336
	Linear Flow	336
	Spherical and Hemispherical Flow	337
	Number of Flowing Fluids in the Reservoir	338
	Fluid Flow Equations	338
	Darcy's Law	338
	Steady-State Flow	340
	Linear Flow of Incompressible Fluids	341
	Linear Flow of Slightly Compressible Fluids	345
	Linear Flow of Compressible Fluids (Gases)	346
	Radial Flow of Incompressible Fluids	349
	Solution Viene service Fland	352
	Radial Flow of Slightly Compressible Fluids	354
	Radial Flow of Compressible Gases	355
	Approximation of the Gas Flow Rate	360
	Horizontal Multiple-Phase Flow	362
	Unsteady-State Flow	364
	Basic Transient Flow Equation	366
	Total Accumulation of Mass	368
	Radial Flow of Slightly Compressible Fluids	370
	Constant-Terminal-Pressure Solution	373
	Constant-Terminal-Rate Solution	374
	The E-Eurotion Solution	374

	The Dimensionless Pressure Drop (p _D)	Solution	381
	Infinite-Acting Reservoir		383
	Finite-Radial Reservoir		385
	Radial Flow of Compressible Fluids		389
	The m(p)-Solution Method (Exact-Solut	Hamson's IPR Comelation (noi	391
	The Pressure-Squared Approximation N	Aethod (p ² -method)	394
	The Pressure-Approximation Method		396
	Pseudosteady-State Flow		398
	Radial Flow of Slightly Compressible F	Al-Hussain-Hossain	404
	Radial Flow of Compressible Fluids (Ga	ases) noemsH	411
	Pressure-Squared Approximation Method	Emara	412
	Pressure-Approximation Method		412
	Skin Factor		413
	Steady-State Radial Flow		416
	Unsteady-State Radial Flow		416
	Pseudosteady-State Flow		417
	Turbulent Flow Factor		418
	Unsteady-State Radial Flow		419
	Semisteady-State Flow		420
	Steady-State Flow		42
	Principle of Superposition		422
	Effects of Multiple Wells		42:
	Effects of Variable Flow Rates		420
	Effects of the Reservoir Boundary		429
	Accounting for Pressure-Change Effects		43
	Transient Well Testing		432
	Drawdown Test		433
	Pressure Buildup Test		44
	Problems		45
	References		455
7	Oil Well Performance		45-
· ·	On went enformance		45/
	Vertical Oil Well Performance		457
	Productivity Index and IPR		457
	Saturated Oil Reservoirs		464
	Undersaturated Oil Reservoirs		466
	Wiggins' Method		471
	Standing's Method		473
	Fetkovich's Method		476
	The Klins-Clark Method		488
	Sukarno and Wisnogroho IPR Method		491
	Horizontal Oil Well Performance		498
	Method I		500
	Method II		500
	Horizontal Well Productivity under Ste	ady-State Flow	502
	Borisov's Method	Concept of Liquid Loading	503
	The Giger-Reiss-Jourdan Method		503
	Joshi's Method		504

	The Renard-Dupuy Method	504
	Horizontal Well Productivity under Semisteady-State Flow	508
	Retnanto and Economides Correlation	509
	Al-Hussain and Hossain Correlation	510
	Harrison's IPR Correlation	510
	Cheng	511
	Retnanto and Economides Correlation	512
	Wiggins-Wang	512
	Al-Hussain-Hossain	512
	Harrison d. Holt Correlations (2) abiul a eldissentme 2 to wolf is the fit	512
	Emara Place Delative Permissional Medianistica A bensuit-enuiterit	512
	Introduction to Nodal Analysis	515
	NODE 1: The Inflow Performance	519
	NODE 2: Outflow Tubing Performance	519
	Inflow and Outflow Relationships	532
	Problems	540
	Reference	542
	Unsteady-State Radial Flow	
8	Cas Well Performance	545
0.	Cas well renormance	545
	Vertical Gas Well Performance	545
	Region III. High-Pressure Region	548
	Region II. Intermediate-Pressure Region	549
	Region I. Low-Pressure Region	549
	Pressure-Squared Approximation Form	552
	Pressure-Approximation Form	553
	Real Gas Potential (Pseudopressure) Form	553
	The Simplified Treatment Approach	554
	The Laminar-Inertial-Turbulent (LIT) Approach	555
	The Back-Pressure Test	559
	Future Inflow Performance Relationships	567
	Back-Pressure Equation	567
	LIT Methods	568
	The Laminar-Inertial-Turbulent "LIT" Method	571
	Horizontal Gas Well Performance	573
	System Analysis	576
	The Inflow and Outflow Performances	578
	Approach 1: Constant Wellhead Pressure	582
	Approach 2: Variable Wellhead Pressure	586
	Surface Choke Performance	589
	Critical Flow	590
	Subcritical Flow	590
	Gas Adjustable Choke	591
	Gas Bean Choke	592
	Flowline and Separator Performance Relationships	594
	Concept of Liquid Loading	598
	Problems	601
	References	602

9.	Gas and Water Coning	605
	Coning Coning in Vertical Wells	605 608
	Vertical Well Critical Rate Correlations	608
	The Meyer-Garder Correlation	609
	The Chierici-Ciucci Approach	614
	The Hoyland-Papatzacos-Skjaeveland Methods	624
	Critical Rate Curves by Chaney et al.	628
	Breakthrough Time in Vertical Wells	636
	The Bournasal Jacassan Mathed	637
	After Breakthrough Performance	638
	Coning in Horizontal Wells	639
	Horizontal Well Critical Rate Correlations	640
	Chaperson's Method	647
	Efros' Method	649
	Karcher's Method	650
	Joshi's Method	651
	Horizontal Well Breakthrough Time	652
	The Ozkan-Raghavan Method	652
	Papatzacos' Method	654
	Problems	659
	References	661
10.	Water Influx	663
	Classification of aquifers	662
	Degree of Pressure Maintenance	664
	Outer Boundary Conditions	665
	Flow Regimes	666
	Flow Geometries	666
	Recognition of Natural Water Influx	667
	Water Influx Models	667
	The Pot Aquifer Model	668
	Schilthuis' Steady-State Model	670
	Hurst's Modified Steady-State Model	674
	The Van Everdingen-Hurst Unsteady-State Model	677
	Edge-Water Drive	678
	The Carter-Tracy Water Influx Model	738
	Fetkovich's Method	742
	Problems	748
	References	750
11.	Oil Recovery Mechanisms and The Material Balance	
00	Equation	751
	Primary Recovery Mechanisms	751
	Rock and Liquid Expansion	752

	The Depletion Drive Mechanism	752
	Gas Cap Drive	755
	The Crewite Drainers Drive Machanism	750
	The Gravity-Drainage-Drive Mechanism	766
	The Material Polence Equation	767
	Pasia Assumptions in the MARE	790
	The MAPE as an Equation of a Straight Line	794
	The Armight Line Solution Method to the MARE	796
	The Straight-Line Solution Method to the MBE	700
	Volumetric Undersaturated-Oil Reservoirs	700
	Volumetric Saturated-Oli Reservoirs	200
	Gas-Cap-Drive Reservoirs	000
	Water-Drive Reservoirs	004
	Combination-Drive Reservoirs	011
	Average Reservoir Pressure	012
	Tracy's Form of the Material Balance Equation	015
	Problems	010
	Reference	010
12.	Predicting Oil Reservoir Performance	819
	Reservoir Performance Prediction Methods	819
	Instantaneous Gas-Oil Ratio	819
	Undersaturated-Oil Reservoirs	831
	Saturated-Oil Reservoirs	833
	Tracy's Method	835
	Muskat's Method	840
	Tarner's Method	844
	Relating reservoir performance to time	849
	Problems	852
	References	853
13.	Gas Reservoirs	855
	The Volumetric Method	856
	The Material Balance Method	858
	Volumetric Gas Reservoirs	859
	Form 1. In terms of p/z	860
	Form 2. In terms of B _a	865
	Water-Drive Gas Reservoirs	867
	The Gas Material Balance Equation as a Straight Line	871
	Abnormally Pressured Gas Reservoirs	876
	Effect of Gas Production Rate on Ultimate Recovery	881
	Tight Gas Reservoirs	881
	Shallow Gas Reservoirs	893
	Problems	898
	References	900

14.	Principles of Waterflooding	901
	Factors to Consider in Waterflooding	901
	Reservoir Geometry	902
	Fluid Properties	903
	Reservoir Depth	903
	Lithology and Rock Properties	903
	Fluid Saturations	904
	Reservoir Uniformity and Pay Continuity	904
	Primary Reservoir Driving Mechanisms	905
	Optimum Time to Waterflood	907
	Impact of Trapped Gas on Oil Recovery by Waterflood	908
	The Concept of Variable-Bubblepoint Pressure	915
	Water Flooding Patterns	918
	Irregular Injection Patterns	919
	Peripheral Injection Patterns	919
	Regular Injection Patterns	920
	Crestal and Basal Injection Patterns	921
	Overall Recovery Efficiency	921
	I. Displacement Efficiency	924
	Effect of Water and Oil Viscosities	931
	Effect of Dip Angle and Injection Rate	932
	Data Preparation	959
	Recovery Performance to Breakthrough	960
	Areal Swoon Efficiency	961
	Areal Sweep Efficiency Before Breakthrough	966
	Areal Sweep Efficiency at Breakthrough	9/1
	Areal Sween Efficiency After Breakthrough	972
	Initial Calculations	972
	Calculation of Recovery Performance to Breakthrough	900
	Oil Recovery Calculations After Breakthrough	989
	Constant Injection Pressure and Variable Injection Rate "i"	996
	Constant Injection Rate and Variable Injection Pressure	997
	Effect of Initial Gas Saturation	1000
	Stage 1: Start–Interference	1001
	Stage 2: Interference-Fill-Up	1006
	Stage 3: Fill-up — Water Breakthrough	1008
	Stage 4: Water Breakthrough-End of the Project	1010
	Impact of Water Fingering and Tonguing	1017
	III. Vertical Sweep Efficiency	1020
	Reservoir Vertical Heterogeneity	1020
	Minimum Number of Layers	1022
	The Zonation Problem	1024
	Calculation of Vertical Sweep Efficiency	1027
	I. Stiles' Method	1028
	II. The Dykstra–Parsons Method	1031
	Methods of Predicting Recovery Performance for Layered	
	Keservoirs	1034

	Simplified Dykstra-Parsons Method	1035
	Modified Dykstra-Parsons Method	1038
	Craig-Geffen-Morse Method	1040
	Waterflood Diagnostic Plots & Surveillance Methods	1044
	Bubble Maps	1045
	The Gas-Oil Ratio Plot:	1047
	The Water-Oil Ratio Plot:	1047
	The Hall Plot	1051
	The X-Plot	1057
	Voidage Replacement Ration and Production Curves Plot	1062
	The ABC Plot	1064
	Heterogeneity Index Map	1066
	Pattern Balancing	1068
	Tracers Survey:	1070
	Volumetric Sweep Efficiency	1072
	Confinement Factor	1074
	Waterflood Decline Curve Analysis	1077
	Traditional Decline Curve Analysis	1078
	Yang's Decline Analysis Model	1079
	The Volumetric Sweep Efficiency Approach	1085
	Analysis of Oil and Water Production Data	1091
	Water Injection Efficiency	1093
	Problems	1098
	Reference	1105
	Covery Performance Alter Breakthrough	
15.	Vapor-Liquid Phase Equilibria	1109
	eal Sweep Efficiency at Breakthrough	1109
	Fauilibrium Patios	1112
	Elash Calculations	1114
	Flash Calculations	1118
	Wilcon's Correlation	1118
	Standing's Correlation	1119
	Convergence Pressure Method	1173
	Hadden's Method	1123
	Standing's Method	1124
	Brace's Method	1120
	N/hitson and Torn Correlation	1120
	Fauilibrium Paties for the Plus Fraction	1120
	Compbell's Method	1129
	Winn's Method	1129
	Katz's Method	1125
	Applications of the Equilibrium Patio in Reservoir Engineering	1131
	Dow Point Pressure	1131
	Bubble Point Pressure	1133
	Separator Calculations	1135
	Density Calculations	1147
	The Standing-Katz Method	1147
	The Alani-Kennedy Method	1154

	Equations of State State Analysis Analysis Analysis	1157
	The Van der Waals Equation of State	1158
	Redlich-Kwong Equation of State	1164
	Soave-Redlich-Kwong Equation of State and Its Modifications	1169
	Modifications of the SRK EOS	1179
	Peng-Robinson Equation of State and Its Modifications	1182
	Applications of the Equation of State in Petroleum Engineering	1193
	Determination of the Equilibrium Ratios	1193
	Determination of the Dew-Point Pressure	1195
	Determination of the Bubble-Point Pressure	1197
	Three-Phase Equilibrium Calculations	1198
	Vapor Pressure from Equation of State	1202
	Splitting And Lumping Schemes of The Plus-fraction	1204
	Splitting Schemes	1205
	Katz's Method	1206
	Lohrenz's Method	1209
	Pedersen's Method	1210
	Ahmed's Method	1211
	Lumping Schemes	1213
	Whitson's Lumping Scheme	1214
	Problems	1218
	References	1222
16.	Analysis of Decline and Type Curves	1227
	Decline-Curve Analysis	1007
	Exponential Decline h = 0	122/
	Harmonic Decline, $b = 0$	1232
	Hyperbolic Decline, $0 \le h \le 1$	1230
	Type-Curve Analysis	1239
	Fethovich Type Curve	1250
	Carter Type Curve	1260
	Palacio Blasingamo Tuno Cunio	12/4
	Mattar and Anderson's Elowing Material Balance	12/9
	Anash et al. Tupo Curves	128/
	Decline Curve Analysis for Fractured Wells	1289
	Infinite Conductivity Vertical Fractures	1297
	Finite Conductivity Vertical Fractures	1298
	Liniform Elux Fractures	1298
	Drobloms	1299
	Problems	1308
	References	1309
17.	Fractured Reservoirs	1311
	Naturally Fractured Reservoirs	1312
	Behavior of Naturally Fractured Reservoirs	1317
	Hydraulically Fractured Wells	1342
	Reference	1386

18. Modern Decline	Curve Analysis	1389
Traditional Arps' DC The Multisegment D Boundary-Dominate The Modified Arps A The Stretched Expor The Logistic Growth The Duong Approac The Power-Law Expo	A method ecline Approach d "B" Approach approach nential Production Decline Model Approach h	1390 1394 1396 1413 "SEPD" 1422 1440 1444 1449 1455
The I-Model Problems		1455
References		1460
Further Reading		1461
Appendix		bontel a sneed 1463
Index		bonteM a necessor 1475