CONTENTS

	Preface	7
I	Variational Methods	9
	A. Introduction	9
	B. Linear harmonic oscillator with a Gaussian test function	11
	C. The first excited state of a linear harmonic oscillator	14
	D. Linear harmonic oscillator with test function $1/(1+x^2)$	16
	E. Hydrogen atom with a Gaussian test function	18
	F. Particle in a $-r^{-3/2}$ potential	21
	G. No matrix element, no fun	24
	H. Quantum rotor with an $A\cos^2\phi$ perturbation	26
I.	Time-Independent Perturbation Theory	31
	A. Introduction	31
	B. Linear harmonic oscillator with an Ax^6 potential	32
	C. Square well potential with an Ax^2 perturbation	34
	D. Linear harmonic oscillator with a modified potential	35
	E. Cubic anharmonic oscillator	39
	F. Particle in a periodic box and with a step potential	41
	G. Particle in a periodically repeated box with a Dirac δ perturbation	43
	H. The double-well quadratic potential	48
	I. A ramp-like infinite square well	50
	J. Don't step on the pin!	53
	K. A pothole-like infinite square well	55
	L. The bound state in an external electric field	56
	M. Linear harmonic oscillator with an Ax^2y^2 perturbation	59
	N. Hydrogen atom in an electric field. The Stark effect in hydrogen	64

	O. The perturbed Hamiltonian matrix for degenerate states	69
	P. Dipole in an electric field	76
III.	Time-Dependent Problems	85
	A. Introduction	85
	B. β -decay of tritium	86
	C. A charged particle in a 3D box with an electric field	93
	D. Hydrogen atom in a time-dependent electric field	105
	E. Time-dependent force acting on a linear harmonic oscillator	108
	F. Time-dependent electric field	113
	G. Time evolution of a system with coupled states	117
IV.	Angular Momentum	125
	A. Introduction	125
	B. Expectation values of \hat{L}_x and \hat{L}_x^2 operators	126
	C. Measurement of spin along a rotated axis	128
	D. Angular momentum after passing through a Stern-Gerlach	
	apparatus	131
	E. Eigenstates of \hat{L}_x	135
	F. Two non-interacting spins	137
	G. Spin-orbit interaction	139
	H. Coupling of momenta	140
	I. Lowering operators	144
	J. Spin-spin Hamiltonian	145
	K. Matrix representation of the spin-spin Hamiltonian	147
	L. Zeeman effect on hyperfine splitting in hydrogen	149
V.	Miscellaneous	155
	A. Introduction	155
	B. Lower-bounded spectrum of a linear harmonic oscillator	155

C. Superposition of states of a linear harmonic oscillator	157
D. The uncertainty principle	159
E. Ehrenfest's theorem	160
F. The virial theorem	162
G. Detection of (in)distinguishable particles	164
H. The polarization density matrix in 2×2 space	171
I. Helium ground state energy I: Variational principle	175
J. Helium ground state energy II: First-order perturbation theory	182
K. Optical selection rules	186
L. Rotational selection rules	193
M. The Hubbard model	203
N. Analytic properties of Bloch functions	212
1: A Cincola Operation Contains	217
ppendix A. Simple Quantum Systems	217
1. Quantum harmonic oscillator	217
a. Hamiltonian and eigenstates	217
b. Ladder operators	218
c. Integrals	219
d. Gaussian integrals	221
2. Particle in an infinitely deep square well potential	223
a. Hamiltonian and eigenstates	223
b. Integrals	224
3. Quantum rotor	228
a. Hamiltonian and eigenstates	228
b. Integrals	229
4. 2D quantum rotor	230
a. Hamiltonian and eigenstates	230
b. Integrals	231
5. Hydrogen atom	233

A

a. Integrals	23
Appendix B. Gamma Function	23
Appendix C. Physical Constants	230
Appendix D. Conversion Factors	239
Index	24
References	24.