Contents

Preface 19

Anth	propogenic impacts on the natural environment of the southern Moravia landscape, 23
1.1	The landscape of southern Moravia (F. Vašíček), 25 1.1.1 References, 27
1.2	Air pollution (P. Hadaš and F. Vašíček), 29
	1.2.1 References, 32
1.3	The hydrological regime and pollution of waters (E. Kočková and P. Hadaš), 33 1.3.1 The hydrological characteristics, 33 1.3.2 Chemical status of the watercourses, 42
	1.3.3 Pollution and chemical status of the Nové Mlýny reservoirs, 45
	1.3.4 References, 50
1.4	The quality of underground water (P. Hadaš), 51
	1.4.1 References, 54
1.5	The technical hydroengineering and land reclamation works (F. Vašíček), 55 1.5.1 References, 59
1.6	Changes in the use of agricultural land (F. Vašíček), 61
	1.6.1 References, 63
1.7	The impact of water withdrawal in the floodplain forest (F. Vašíček), 65 1.7.1 References, 67
The	research locality (F. Vašíček), 69
Abio	tic factors after the change of moisture regime in the forest ecosystem, 73
3.1	The meteorological conditions in southern Moravia following the control of flooding

in the floodplain forests (F. Vašíček and J. Pivec), 75

References, 80

3.1.1

23

- 3.2 Light conditions in the floodplain forest (F. Vašíček), 81
 - 3.2.1 Introduction, 81
 - 3.2.2 Methods, 81
 - 3.2.3 Results and discussion, 83
 - 3.2.4 Summary, 94
 - 3.2.5 References, 96
- 3.3 The microclimate of the floodplain forest (F. Vašíček and J. Pivec), 97
 - 3.3.1 The aim of the work, 97
 - 3.3.2 Methods, 97
 - 3.3.3 Results and discussion, 97
 - 3.3.4 Summary, 101
 - 3.3.5 References, 101
- 3.4 Actual and potential evapotranspiration in the floodplain forest (V. Židek), 103
 - 3.4.1 Introduction, 103
 - 3.4.2 Material and methods, 103
 - 3.4.2.1 Measurement, instrumentation and data processing, 104
 - 3.4.2.2 The determination of the actual evapotranspiration by the energy (thermal) balance method, 106
 - 3.4.2.3 Determination of the potential evapotranspiration, 107
 - 3.4.3 Results and discussion, 109
 - 3.4.3.1 The course and daily totals of the latent heat flow and other components of the equation of thermal balance, 109
 - 3.4.3.2 Comparison of the values of the actual evapotranspiration (form the equation of thermal balance) with values of potential evapotranspiration, 115
 - 3.4.4 Conclusion, 118
 - 3.4.5 References, 119
- 3.5 Atmospheric pollution at the Lednice na Moravě research site (R. Mrkva), 121
 - 3.5.1 Introduction, 121
 - 3.5.2 Methods, 121
 - 3.5.3 Results, 122
 - 3.5.3.1 Emissions of SO₂ in the vicinity of the research area, 122
 - 3.5.3.2 The emissions of dust fallout, 122
 - 3.5.3.3 Fly ash, 123
 - 3.5.3.4 Concentration of SO₂ and SO₃ S, 123
 - 3.5.4 Discussion, 124
 - 3.5.5 Summary, 125
 - 3.5.6 References, 125
- 3.6 Changes in the water table (A. Prax), 127
 - 3.6.1 Introduction, 127
 - 3.6.2 Measuring methods, 127
 - 3.6.3 Results and discussion, 128
 - 3.6.4 Conclusion, 130
 - 3.6.5 References, 131
- Recent soil processes in the floodplain forest (B. Grunda, A. Prax and E. Klimo), 133
 - 3.7.1 Introduction, 133

- 3.7.2 Materials and methods, 133
- 3.7.3 Results and discussion, 134
 - 3.7.3.1 Changes in the input of nutrients to the ecosystem following flood control measures, 134
 - 3.7.3.2 Changes in the moisture regime of the soils, 135
 - 3.7.3.3 Changes in the physical properties of the soils, 135
 - 3.7.3.4 The oxidation-reduction conditions of the soil, soil reaction, 136
 - 3.7.3.5 Changes in humus, carbon and nitrogen content of the soil, 137
- 3.7.4 Summary, 140
- 3.7.5 References, 140
- 4 Changes of structures and processes in the ecosystem of the floodplain forest in the medium moisture gradient under the influence of changes in moisture conditions, 143
 - 4.1 The hydrophysical properties of the soil and changes in them (A. Prax), 145
 - 4.1.1 The aim of the work, 145
 - 4.1.2 Material and methods, 145
 - 4.1.3 Results and discussion, 146
 - 4.1.3.1 Changes in the dynamics of the water table, 146
 - 4.1.3.2 Changes in the dynamics of the soil moisture content, 149
 - 4.1.3.3 Changes in the physical properties of the soil, 162
 - 4.1.4 Summary, 167
 - 4.1.5 References, 168
 - 4.2 The processes of decomposition of organic matter (B. Grunda), 169
 - 4.2.1 Introduction, 169
 - 4.2.2 Material and methods, 169
 - 4.2.3 Results, 171
 - 4.2.3.1 The structure and number of microbial decomposers microphytoedaphons, 171
 - 4.2.3.1.1 The cultivation plate methods, 171
 - 4.2.3.1.2 The ammonifying microorganisms, 173
 - 4.2.3.1.3 Organisms binding atmospheric nitrogen, 174
 - 4.2.3.1.4 Sulphate-reducing bacteria, 175
 - 4.2.3.1.5 Cellulose decomposers, 175
 - 4.2.3.1.6 Polyphenoloxidase producers, 177
 - 4.2.3.1.7 Microscopy methods, 177
 - 4.2.3.1.8 Microbial biomass, 179
 - 4.2.3.1.9 The seasonal production of microorganisms, 180
 - 4.2.3.2 The decomposition of cellulose, 181
 - 4.2.3.2.1 Laboratory test, 181
 - 4.2.3.2.2 Field test, 181
 - 4.2.3.3 The decomposition of litter, 182
 - 4.2.3.3.1 The energy reserves, 185
 - 4.2.3.4 Activity of soil catalase, 186
 - 4.2.3.5 Soil respiration, 186
 - 4.2.3.5.1 The laboratory test, 187
 - 4.2.3.5.2 The field test, 187
 - 4.2.3.6 Ammonification and nitrification, 190
 - 4.2.3.6.1 Ammoniacal nitrogen, 190
 - 4.2.3.6.2 Nitrate nitrogen, 191

- 4.2.4 Summary, 192
- 4.2.5 References, 194
- 4.3 Changes in the structure and biomass of the herb layer under the conditions of a medium moisture gradient (F. Vašíček), 197
 - 4.3.1 The aim of the work, 197
 - 4.3.2 Material and methods, 197
 - 4.3.3 Results, 199
 - 4.3.4 Summary, 225
 - 4.3.5 References, 227
- 4.4 The reaction of the shrub layer (F. Vašíček), 229
 - 4.4.1 Introduction, 229
 - 4.4.2 Methods, 229
 - 4.4.3 Results and discussion, 230
 - 4.4.4 Summary, 242
 - 4.4.5 References, 242
- 4.5 The tree layer (M. Vyskot), 243
 - 4.5.1 Introduction, 243
 - 4.5.2 Methods, 243
 - 4.5.3 Results, 245
 - 4.5.3.1 Basic data for 1970-84, 245
 - 4.5.3.2 Analysis of dead trees, 249
 - 4.5.3.3 Evaluation of the diameter increment, 251
 - 4.5.3.4 Litter, 257
 - 4.5.4 Summary, 261
 - 4.5.5 References, 263
- 4.6 Model of the organic matter flow in a representative ecosystem of the floodplain forest (M. Palát), 265
 - 4.6.1 Introduction, 265
 - 4.6.2 Methods, 265
 - 4.6.3 Results, 267
 - 4.6.4 Discussion, 275
 - 4.6.5 Summary, 276
 - 4.6.6 References, 277
- 5 Analysis of environmental conditions and vegetation gradients in the area of floodplain forests, 279
 - 5.1 Types of dominance of the herb layer associated with moisture gradients soon after changes in the moisture regime (P. Vašiček), 281
 - 5.1.1 Material and methods, 281
 - 5.1.2 Results, 283
 - 5.1.2.1 The biomass of species according to their ecological groups and in relation to soil moisture, 283
 - 5.1.2.2 Types of dominance and the moisture gradient, 289
 - 5.1.3 Summary, 292
 - 5.1.4 References, 293

- 5.2 Selected degrees of the soil moisture gradient and the characteristics of primary producers, 295
 - 5.2.1 The dynamics of soil moisture in areas with various moisture gradients (A. Prax), 295
 - 5.2.1.1 Introduction, 295
 - 5.2.1.2 Methods, 295
 - 5.2.1.3 Results, 296
 - 5.2.1.4 Discussion, 307
 - 5.2.1.5 Summary, 308
 - 5.2.2 Seasonal changes in the structure and production parameters of five selected types of dominance of the herb layer (F. Vašíček), 309
 - 5.2.2.1 Introduction, 309
 - 5.2.2.2 Methods, 309
 - 5.2.2.3 Results and discussion, 310
 - 5.2.2.3.1 Changes in above-ground biomass, 310
 - 5.2.2.3.2 Seasonal changes in the dead and dying matter of the herb layer, 317
 - 5.2.2.3.3 Seasonal changes in leaf fall on the soil surface, 320
 - 5.2.2.4 Summary, 321
 - 5.2.2.5 References, 322
 - 5.2.3 The dynamics of diameter increment of trees under different moisture conditions (M. Vyskot), 323
 - 5.2.3.1 The aim of the work, 323
 - 5.2.3.2 Methods, 323
 - 5.2.3.3 Results and discussion, 325
 - 5.2.3.4 Conclusion, 333
 - 5.2.3.5 References, 333
- 5.3 Direct and indirect analyses of the environment and herb vegetation gradients, 335
 - 5.3.1 Soil moisture content in connection with topography (A. Prax), 335
 - 5.3.1.1. Introduction, 335
 - 5.3.1.2 Material and methods, 335
 - 5.3.1.3 Results and discussion, 336
 - 5.3.1.3.1. The Lednice transect, research area 6, 336
 - 5.3.1.3.2 The Moravská Nová Ves transect, research area 7, 341 5.3.1.3.3 The Ranšpurk transect, research area 8, 347
 - 5.3.1.4 Summary, 353
 - 5.3.1.5 References, 354
 - 5.3.2 Changes in the herbal vegetation along the topographical moisture gradient (F. Vašíček), 355
 - 5.3.2.1 Introduction, 355
 - 5.3.2.2 Material and methods, 355
 - 5.3.2.3 Results, 357
 - 5.3.2.3.1 The Lednice transect, research area 6, 357
 - 5.3.2.3.2 The Moravská Nová Ves transect, research area 7, 365 5.3.2.3.3 The Ranšpurk transect, research area 8, 372
 - 5.3.2.4 Discussion, 382
 - 5.3.2.5 Summary, 384
 - 5.3.2.6 References, 385
 - 5.3.3 Indirect gradient analysis (J. Viewegh), 387
 - 5.3.3.1 Introduction, 387

- 5.3.3.2 Materials and methods, 387
- 5.3.3.3 Results, 387
- 5.3.3.4 Summary, 392
- 5.3.3.5 References, 392
- 6 Water relations of floodplain forest primary producers, 395
 - 6.1 Water consumption of full-grown oak (Quercus robur L.) in a floodplain forest after the cessation of flooding (J. Čermák, J. Kučera and M. Štěpánková), 397
 - 6.1.1 Introduction, 397
 - 6.1.2 Environmental conditions, 397
 - 6.1.3 Material and methods, 399
 - 6.1.4 Results and discussion, 401
 - 6.1.4.1 Seasonal and diurnal dynamics of transpiration flow in trees, 401
 - 6.1.4.2 Dependence of transpiration flow on meteorological conditions, 404
 - 6.1.4.3 The characteristic values of transpiration flow, 407
 - 6.1.4.4 Comparison of the period following flood control measures with that of diminishing floods, 410
 - 6.1.5 Conclusion, 413
 - 6.1.6 References, 415
 - 6.2 The water relations of the herb, shrub and tree layers of the floodplain forest (M. Penka), 419
 - 6.2.1 Introduction, 419
 - 6.2.2 Material and methods, 419
 - 6.2.3 Results, 421
 - 6.2.4 Discussion, 435
 - 6.2.5 Summary, 445
 - 6.2.6 References, 446
- 7 Reaction of floodplain forest secondary producers to changed moisture conditions, 449
 - 7.1 Selected groups of insects and harvestmen (J. Křístek), 451
 - 7.1.1 Introduction, 451
 - 7.1.2 Methods, 451
 - 7.1.3 Results, 453
 - 7.1.3.1 *Opilionidea*, 453
 - 7.1.3.2 Psocoptera, 455
 - 7.3.3.3 Heteroptera, 457
 - 7.1.3.4 Carabidae (Coleoptera), 463
 - 7.1.4. Discussion, 465
 - 7.1.5. Summary, 467
 - 7.1.6. References, 468
 - 7.2 The effect of changes in moisture conditions on a community of haematophagous Diptera and ticks in a floodplain forest (J. Knoz and J. Vaňhara), 469
 - 7.2.1 Introduction, 469
 - 7.2.2 Material and methods, 470
 - 7.2.3 Results, 472
 - 7.2.3.1 Species composition of haematophagous *Diptera* and ticks in southern Moravia, 472

- 7.2.3.2 The long-term effects of the hydroengineering works on a community of mosquitoes (Culicidae) on the lower reaches of the river Dyje, 473
 - 7.2.3.2.1 Qualitative composition, 473
 - 7.2.3.2.2 Dominance, its dynamics and concentration, 474
 - 7.2.3.2.3 Reaction of mosquitoes to new ecological conditions, 477
 - 7.2.3.2.4 The effect of the hydroengineering works on the community of mosquitoes, 479
- 7.2.3.3 Present state of development of a community of biting midges (Ceratopogonidae) of the genus Culicoides in a drying floodplain forest, 481
 - 7.2.3.3.1 Qualitative composition, 481
 - 7.2.3.3.2 Zoogeographical evaluation of the community, 482
 - 7.2.3.3.3. Dominance and its dynamics and concentration, 483
- 7.2.3.4 The effect of meteorological factors on the activity of adult individuals of the communities of mosquitoes and of biting midges of the genus *Culicoides*, 488
 - 7.2.3.4.1 The effect of temperature, 488
 - 7.2.3.4.2 The effect of air humidity, 491
 - 7.2.3.4.3 Other meteorological factors, 492
- 7.2.3.5 Trophic bonds of haematophages of the southern Moravian flood-plain forest, using the example of a community of mosquitoes (Culicidae), 493
- 7.2.4 Summary, 495
- 7.2.5 Appendix, 498
- 7.2.6 References, 502
- 7.3 A community of small terrestrial mammals (J. Zejda), 505
 - 7.3.1 Introduction, 505
 - 7.3.2 Material and methods, 506
 - 7.3.3 Results, 507
 - 7.3.3.1 The reproduction ecology of the various species and population, 507
 - 7.3.3.2 Characteristics of the community, 509
 - 7.3.3.2.1 Dominance, 509
 - 7.3.3.2.2 Density, 510
 - 7.3.3.2.3 Population dynamics, 511
 - 7.3.3.2.4 Diversity, 513
 - 7.3.3.2.5 Constancy, 514
 - 7.3.3.3 Energy flow through populations of species and through the community as a whole, 514
 - 7.3.3.3.1 Mortality, average age, turnover, 514
 - 7.3.3.3.2. Production, 516
 - 7.3.3.3.3 Consumption, 516
 - 7.3.4 Discussion, 517
 - 7.3.5 Conclusion, 519
 - 7.3.6 Summary, 520
 - 7.3.7 References, 521
- 7.4 Changes in the structure of the avian community (Z. Bauer), 5237.4.1 Introduction, 523

- 7.4.2 Methods, 523
- 7.4.3 Results, 525
- 7.4.4 Summary, 530
- 7.4.5 References, 531
- 8 Use of forest resources in the floodplain landscape following the changes in moisture regime, 533
 - 8.1 Principles of forest management planning (D. Macháč), 535
 - 8.1.1 Introduction, 535
 - 8.1.2 Methods, 535
 - 8.1.3 Results and discussion, 536
 - 8.1.3.1 The silvicultural system, 536
 - 8.1.3.2 Target composition and spatial arrangement, 537
 - 8.1.3.3 Temporal arrangement of the forest, 538
 - 8.1.3.4 The target timber production, 539
 - 8.1.4 Conclusion, 542
 - 8.1.5 References, 542
 - 8.2. The recreational use of the floodplain forest (S. Volný), 543
 - 8.2.1 Introduction, 543
 - 8.2.2 Material and methods, 543
 - 8.2.3 Results, 544
 - 8.2.4 Discussion, 545
 - 8.2.5 Summary, 546
 - 8.2.6 References, 546
 - 8.3 Some ideas for the optimal exploitation of the wood-producing and non-wood-producing functions of the forest ecosystems in a new ecological situation (F. Vašíček and J. Hromas), 549
 - 8.3.1 References, 552
- 9 Use of land resources after draining of originally inundated floodplain meadows, 553
 - 9.1 Natural and recultivated meadows (J. Lesák and A. Pavlíček), 555
 - 9.1.1 Introduction, 555
 - 9.1.2 Material and methods, 555
 - 9.1.3 Results, 557
 - 9.1.3.1 Changes in the population structure of the floodplain meadows, 557
 - 9.1.3.2 Influencing the production of above-ground biomass, 559
 - 9.1.3.3 Influencing the weight of underground organic matter and roots, 562
 - 9.1.3.4 The supply and consumption of nutrients in the grass stand, 562
 - 9.1.3.5 The effectiveness of the transformation of solar radiation and the possibility of influencing the energy values of grasslands, 564
 - 9.1.4 Summary, 566
 - 9.1.5 References, 568
 - 9.2 The ecology and production of field crops on ploughed meadows (J. Zimolka), 571
 - 9.2.1 Introduction, 571
 - 9.2.2 Methods, 571

- 9.2.3 Results and discussion, 572
 - 9.2.3.1 Winter wheat, 572
 - 9.2.3.2 Grain maize, 576
 - 9.2.3.3 Spring barley, 578
 - 9.2.3.4 Sugar beet, 578
 - 9.2.3.5 Clover, 579
 - 9.2.3.6 Beans, 579
 - 9.2.3.7 The productivity of crop rotation, 579
 - 9.2.3.8 Supply, uptake and leaching of nutrients, 582
- 9.2.4 Summary, 584
- 9.2.5 References, 586
- 10 The influence of hydrological works on the water biome (J. Heteša and I. Sukop), 587
 - 10.1 Introduction, 587
 - 10.2 Material and methods, 587
 - 10.3 Results and discussion, 590
 - 10.3.1 Regulated watercourses, 590
 - 10.3.1.1 Phytoplankton and primary production, 590
 - 10.3.1.2 Zoobenthos, 591
 - 10.3.1.3 Drift, 592
 - 10.3.1.4 The effect of regulation on the biocoenoses, 592
 - 10.3.1.5 The effect of the reservoir on the biocoenoses of the reach below it, 593
 - 10.3.2 The new reservoirs, 594
 - 10.3.2.1 Phytoplankton and primary production, 594
 - 10.3.2.2 Macrophyta, 599
 - 10.3.2.3 Zooplankton, 599
 - 10.3.2.4 Zoobenthos, 600
 - 10.3.2.5 Fish stock, 602
 - 10.3.2.6 The function of the ecosystem of the reservoir and ecological disasters, 603
 - 10.4 Summary, 604
 - 10.5 References, 605
- 11 Conclusions (F. Vašíček), 607

Figures-Maps

Plates

Index, 621