

II	erace	
Int	troduction to thermal science	
	lume one	
As	spects of history and links to modern science	29
1)	What makes thermal science beneficial?	32
a)	Searching nature and the scale dimensions	32
b)	Thermal feeling	34
c)	Databases in thermal material sciences	35
d)	Databases in thermal material sciences	38
e)		41
2)	Roots of Western civilization	46
a)	Heat as a manufacturing tool	46
b)	Mechanical motion and heat transfer	48

c)	Understanding our universe	
d)	Miracle of commencement.	
e)	Growth of modern theories	58
3)	Fire as a philosophical archetype	66
a)	Sources and effects of fire,	
b)	Early Greek philosophical views	
c)	Concept of four elements	
d)	Impact of alchemy	
	tment and the methods of thermal analysis methods are ensured morning and provided	
4)	Renaissance and the New Age	80
a)	Emerging new ideas	
b)	Phlogiston and caloric	
c)	Heat and energy	
d)	Atomists and matter	
e)	Underpinning of thermodynamics	89
T :	terature	02
LII	erature	
Vo	lume two	
Ar	opreciation of heat and thermal physics	97
100		
5)	Heat, temperature and gradients	100
a)	Development of the concept of temperature	100
b)	Heat transfer	
c)	Non-stationary heat diffusion and the Schrödinger equation	
d)	Practical aspects of heat flow – contact resistance and periodical outcome	
e)	Warm-cool feeling	
f)	Turbulent boundary layers	
g)	Special aspects of non-equilibrium heat transfer	108
6)	Thermodynamic principles	112
a)	Aspects of chemical thermodynamics.	
b)	Effect of the rate of heating	
c)	Thermal properties and measurable quantities	
d)	Chemical reactions.	115
e)	Estimation and simulation of thermodynamic data for some inorganic compounds	116
f)	Heterogeneous systems and the effect of surface energy	119
g)	Effect of perturbations and features of a rational approach	122
7)	Equilibrium and kinetic phase diagrams, nucleation and growth, glasses	126
7) a)	Equilibrium and kinetic phase diagrams, nucleation and growth, glasses Equilibria and generalized Clapeyron equations	
b)	Ideal and real solid solutions, phase diagrams	
c)	Nucleation phenomena and phase transitions	
d)	Kinetic phase diagrams	
e)	Aspects of invariant and variant processes	
f)	Thermodynamics of non-equilibrium glass transition.	
g)	Use of temperature diagrams for a better understanding of transition processes in glasses	
6/	Chiefficant processing and manufacturing of advanced material business of militariot businessesses	
8)	Thermal physics of processes dynamics	142
a)	Phase transitions and their order	
b)	Broadened phase transformations	143

c)	Equilibrium background and kinetic degree of a phase transition	
d)	Constitutive equations applied in chemical kinetics	
e)	Modeling used in the description of reaction mechanism	
f)	T-T-T and C-T phase diagrams	149
Lit	terature	151
	lume three	repulsive because (0
In	nermal treatment and the methods of thermal analysis	155
9)	Thermophysical examinations and temperature control	158
a)	Measurements and modes of assessment	
b)	Treatment of the output signal	161
c)	Characterization of experimental curves	164
d)	Purpose of the measurement – exemplifying thermogravimetry	166
e)	Origins of modern thermal analysis	169
10)	Thermal study of materials and substances	174
a)	Temperature control	
b)	Temperature detection	177
(c)	Extreme temperature changes and the sample preparation methods	178
d)	Surface treatment by lasers	182
e)	Controversial character of bulk and spot observations	185
f)	Particularity of temperature modulation	187
11)	Thermal analysis and calorimetry	190
a)	Systematic of calorimetry	
b)	Classification of thermoanalytical methods – heat balance	
c)	DTA and DSC as quantitative instruments	
e)	DTA calibration and the use of defined electrical pulses	
f)	Practical cases of applications	
g)	Temperature modulated modes	
12)	Non-isothermal kinetics by thermal analysis	204
a)	Fundamental aspects of kinetic data evaluation	
b)	Formal kinetic models and the role of an accommodation function	
c)	Peculiarities of non-isothermal models	
d)	Optimal evaluation procedures	
e)	Oscillation-controlled-rate modes of thermal analysis,	
f)	Kinetic compensation effect	
Lit	terature	
Vol	lume four	
	nermal dynamics and non-equilibrium phenomena	
13)	Power laws, fractals, chaos and information; or how nature is smart	222
a)	Stimulation responses and logarithmic dependences	222
b)	Significance of limits and self-similarity	224
c)	Sierpinski gaskets and fractal dimensions	227
d)	Deterministic chaos, periodic points and logistic functions	230

e)	Order, entropy and information	232
f)	Information and organization	235
14)	Oscillation modes and modern theories of state	242
a)	Pendulum and related theory of ordered and chaotic motions	
b)	Particles and their energies	
c)	Vibration structures in condensed state and the description of vacancies creation	
d)	Mathematical treatment of strong non-linearity above Tg transition	
e)	Micro-model of solid-liquid transition: two types of vibration units	
f)	Source of diffusion movements: non-deterministic elements	247
15)	Advanced evaluation of processes – disequilibria and dendritic growth	250
a)	Classical kinetics and non-equilibrium thermodynamics	
b)	Accounting on multiple fluxes	
c)	Stereology aspects	
d)	Dissipative structures	
e)	Interface stability, perturbation and oscillatory modes	255
f)	Chaotic-like case of dendritic growth	257
16	The principle of least action and self-organization of chemical reactions	260
	How to evaluate unusual experiments	
a)	Regular patterns provided by living organisms	
b)	Repetitious order in some inorganic reactions	
d)	Bénard convective rolls	
e)	Principle of least action	
f)	Diffusion action of Brownian particles	
g)	Oscillatory regime of the Belousov- Zhabotinsky reactions	
h)	Quantum criterion and speed of diffusion	
/		
Lit	terature	273
Voi	lume five	
So	ciety, science and ecology – progress against survival	277
17	Energy science and society – environmental dilemma	200
	Heat as a motive power – engines	
a)	Alternative energy sources perspective to replace intermediary heat production	
b)	Resources of energy – how long they would last	
d)	Heat production as a source of unwanted emission – problem of 'clean energy'	
e)	Non-equilibrium thermodynamics of fluid systems and our 'cosmological engine'	
18)	Thermodynamics and society – laws versus feelings	
a)	Application of thermodynamic laws to society behavior	
b)	Some extended thermodynamic thoughts in economics	
c)	Rules of behavior: strategy for survival and evolution	302
19) Modern materials and society	306
a)	Intelligent processing and manufacturing of advanced materials	
b)	Metallic glasses	
c)	Ceramic high-temperature superconductors	311
d)	Bio-compatible glass-ceramics as mimetic materials for the bone tissue implantations	318

20) Advanced trends in understanding our Universe	326
a) Bartoli's thermal engine and the zero-point radiation	326
b) Energy in vacuum and Casimir forces	327
c) Hypothetical Bartoli's engine working with zero-point electromagnetic radiation	328
d) Quantum impact on the study of low dimensional systems	331
e) Quantum information processing	332
f) Solar microwave background radiation	
Literature	339
Conclusions	344
Acknowledgement	349
Personalities	352
Index	
Layout of the art photos	371
Informercial	373