Contents

L	Ultrasound Bio-Safety survey for practicians - the current ECMUS	
	policy (Christian Kollmann)	1
	1.1 Ultrasound interactions	1
	1.1.1 Mechanical interactions	2
	1.1.2 Thermal interactions	7
	1.2 Epidemiological investigations and adverse biological effects	10
	1.3 Potential risk rating for different ultrasound imaging modes	11
	1.4 Indices to estimate the potential risk	12
	1.4.1 Mechanical Index (MI)	13
	1.4.2 Thermal Index (TI)	13
	1.4.3 Survey of TI / MI-values measured in routine scanning	14
	1.5 ECMUS Recommendations for routine use	16
	1.5.1 Clinical Safety Statement	17
	1.5.2 Souvenir images	17
	1.6 Practical ultrasound exposure estimation, safety awareness and safety related equipment maintenance	19
	1.7 References	20
2	Methods for Ultrasound Scanners Performance Evaluation	
	(Ladislav Doležal)	23
	2.1 Standards and official recommendations	24
	2.2 Methods used for quality performance assessment of ultrasound scanners and their parameters	35
	2.2.1 Simple ("paperclip" or "coin") method	35

	2.2.2 Daily Tests	36
	2.2.3 Test objects for evaluation	38
	2.2.4 First Call aPerio	41
	2.2.5 Irradiated acoustic pressure determination by use of hydrophone	43
	2.2.6 Point Spread Function (PSF) method	44
	2.2.7 The methods comparison	47
	2.3 References	51
3	Ultrasound Image Quality Assurance Using a Signal-to-Noise Measurement Method (Friedrich Überle)	55
	3.1 Efforts towards increasing US image quality assurance	56
	3.2 Ultrasound Image Parameters	57
	3.3 Sources of failures and degradation of ultrasound imagers	58
	3.3.1 US transducer failures	59
	3.3.2 Standard Tests for US imagers	60
	3.4 Materials and Methods	62
	3.4.1 Construction of the test phantom	62
	3.4.2 Measurement procedure	66
	3.4.3 Automated evaluation of the measurement results	67
	3.4.4 Interpretation of the measurement results	69
	3.5 Pilot Study	71
	3.5.1 Materials and Methods	71
	3.5.2 Results	71
	3.6 Discussion	76
	3.7 Conclusions	79

	3.8 References	80
4	Quality control of ultrasound equipment with UltralQ software (Wendy Berkers)	83
	4.1 History	83
	4.2 General information	83
	4.3 Image import	85
	4.4 Usability with commercial test objects	85
	4.5 Actual developments and advantages	85
	4.6 How to perform a QA check	87
	4.7 Summary	88
5	Automated measurements for ultrasonic QA (Andrew Hurrell)	89
	5.1 Measurement tank	90
	5.1.1 Scanning rig	90
	5.1.2 Data acquisition	91
	5.1.3 Tank lining	92
	5.1.4 Water treatment	93
	5.2 Hydrophones	94
	5.2.1 Membrane hydrophones	94
	5.2.2 Needle hydrophones	95
	5.2.3 Fibre-optic hydrophones	96
	5.3 Data processing	97
	5.3.1 Voltage-to-pressure conversion	97
	5.3.2 Acoustic output parameters	97
	5.3.3 Quantifying spatial variation	98

	5.3.4 Reporting	98
	5.4 References	99
6	Doppler Performance Testing: Is it hitting the mark? (Jacinta E. Browne)	101
	6.1 Review of current Doppler Performance Test Procedures	102
	6.1.1 Continuous Wave and Pulsed Wave Doppler Performance Test Protocols	102
	6.1.2 Colour and Power Doppler Performance Test Protocols	105
	6.2 Colour and Power Doppler Tissue Mimicking Phantoms and Test Objects	109
	6.3 New Technology	112
	6.4 Conclusions	112
	6.5 References	113
7	Ecological competence of yeast suspensions in acoustic filters (Stefan Radel and Cosima Koch)	119
	7.1 Ultrasonic particle manipulation	121
	7.1.1 Ultrasonic resonator	121
	7.1.2 Radiation forces	121
	7.1.3 Ultrasonically Enhanced Settling	124
	7.1.4 The h-shape separator	127
	7.2 Methods	128
	7.2.1 Suspensions	128
	7.2.2 Assessment	129
	7.2.3 Microscopy	130
	7.2.4 Handling	131
	7.3 Experiments	132

	7.3.1 Influence of US on yeast cells kept in pressure nodes	132
	7.3.2 Damage to yeast cells in inter-nodal space	138
	7.3.3 Influence of US on yeast cells in h-shape	146
	7.4 Conclusions	151
	7.4.1 Viable filtration	151
	7.4.2 Damaging streaming	152
	7.4.3 Replication	154
	7.5 References	155
8	The effect of Photodynamic and Sonodynamic treatment on B16FO cell line (Kateřina Tománková and Hana Kolářová)	161
	8.1 Materials and Methods	162
	8.1.1 Materials and instruments	162
	8.1.2 Photodynamic and Sonodynamic therapy	162
	8.1.3 Microscopic study	163
	8.1.4 Measurement of ROS production	163
	8.1.5 Cancer cell cytotoxicity assay	164
	8.2 Results and Discussion	164
	8.3 References	168