		ational and recognizable sets of graphs providence length	up3	
		HR-equational sats of straphets of the cost for each of		
281		Contents of oldesing oper-fill		
292	- 43	VR-equational sets of sample draphs unautic taronals.	4.3	639
		VR-recognizable sets of simplengraphs protono anter	4.4	
312		HR- and VR-equational and rocognizable series prosent	4.5	
313		References	4.6	
		and open problems signi rebro-broose siber	noM.	
315		Relational structures and logical languages	5.1	
		Graph properties expressible in monadic	5.2	
188		second-order logic		
358		Monadic second-order logic and recognizability	5.3	7.4.1
Fore	word by	Maurice Nivatemosti asbro-brosos siberom sidebiosa	pa	ige xi
409	deratio	Logical characterization of recognizability	5.5	
Intro	oductio	Equivalences of logical formulas	5.6	14
425	Over	References	5.7	10
427	1.1	Context-free grammars anotheologie of multiv	Algo	17
	1.2	Inductive sets of properties and recognizability	6.1	28
	1.3	Monadic second-order logic	6.2	4(
	1.4	Two graph algebras of astumion rebro-broose sibsnoM		46
	1.5	Fixed-parameter tractability the broose of balance and O	6.4	53
503	1.6	Decidability of monadic second-order logic apprendix	6.5	56
505	1.7	Graph transductions	Mon	58
	1.8	Monadic second-order logic with edge set quantifications	7.1	68
534	1.9	Relational structures do no manoral video de al series		74
555	1.10	References and the bound and another burgers of design	7.3	78
2	Grap	h algebras and widths of graphs		80
	2.1	Algebras and terms	7.5	81
	2.2	Graphs of the adolescirotographic laoined buods another O	7.6	87
576	2.3	The HR algebra of graphs with sources		99
578	2.4	Tree-decompositions	Tran	121
	2.5	The VR algebra of simple graphs with ports	1.8	144
	2.5	Many-sorted graph algebras	8.2	176
	2.0	Peferences		184
593	Z./ Faus	tional and recognizable sets in many-sorted algebras	8.4 .	189
593	2 1	The equational sets of an algebra		190
604	2.1	Transformations of equation sustained		105
	3.2	iransformations of equation systems	(8.7.)	200
	3.3	Intermezzo on automata	8.8	22
	3.4	The recognizable sets of an algebra	8.9	22'
618	3.5	References	01.8	259

1			4
(0	nt	pn	ts
VU	111	c_{ll}	10

4	Equa	ntional and recognizable sets of graphs	26
	4.1	HR-equational sets of graphs	26
	4.2	HR-recognizable sets of graphs	28
	4.3	VR-equational sets of simple graphs	29
	4.4	VR-recognizable sets of simple graphs	30
	4.5	HR- and VR-equational and recognizable sets	31
	4.6	References	31
5	Mon	adic second-order logic	31
	5.1	Relational structures and logical languages	31
	5.2	Graph properties expressible in monadic	
		second-order logic	33
	5.3	Monadic second-order logic and recognizability	35
ix si	5.4	Decidable monadic second-order theories	40
	5.5	Logical characterization of recognizability	40
1	5.6	Equivalences of logical formulas	oltoubortio
16	5.7	References	19VO 42
6	Algo	rithmic applications	1.1 42
28	6.1	Fixed-parameter tractable algorithms for model-checking	S.1 42
	6.2	Decomposition and parsing algorithms	٤.1 43
46	6.3	Monadic second-order formulas compiled into finite auto	mata 43
53	6.4	Other monadic second-order problems solved with autom	ata 49
	6.5	References	0.1 50
7	Mona	adic second-order transductions	50
	7.1	Definitions and basic properties	50
	7.2	The Equationality Theorem for the VR algebra	53
	7.3	Graph transductions using incidence graphs	55
	7.4	The Equationality Theorem for the HR algebra	55
10	7.5	Decidability of monadic second-order satisfiability proble	ems 56
10	7.6	Ouestions about logical characterizations of recognizabili	tv 57
	7.7	References	57
8	Tran	sductions of terms and words	57
121	8.1	Terminology	58
	8.2	Tree-walking transducers	2.5
176	8.3	The basic characterization	2.6
185	8.4	From jumping to walking	2.7
188	8.5	From global to local tests	59 Equ
081	8.6	Multi bottom-up tree-to-word transducers	1.8 60
206	8.7	Attribute grammars and macro tree transducers	5.8 61
221	8.8	Nondeterminism stomotus no occentiatal	٤.٤ 61
227	8.9	VR-equational sets of terms and words	A.E 61
259	8.10	References	2.8 61

viii

9	Rela	tional structures	621
	9.1	Two types of ternary relational structures related	
		to ordered sets	622
	9.2	Relational structures of bounded tree-width	629
	9.3	Terms denoting relational structures	636
	9.4	Sparse relational structures	651
	9.5	References	685
Con	clusion	and open problems	686
Refe	rences		691
Inde.	x of not	ation	711
Inde	x		721

Contents

ix

The concept of a language to communicate with a computer, a machine or any and of device performing operations is at the heart of Computer Science, a field hat has truly thrived with the emergence of symbolic programming languages in the 1960s. Formalizing the algorithms that enable computers to calculate an intended estil, to control a machine or a robot, to search and find the relevant information in reporte to a query, and even to instant the human brain in actions such as measuring isk and making decisions, is the main activity of computer scientists as well as of ordinary computer users.

The languages designed for these tasks, which number by flowsands, are defined in the first place by syntactic rules that construct acts of words and to which are then anached meanings. This understanding of a language was first opposited by structural languages, is particular Nicolai Treubetikei, Reman Jacobson and Near Chonsky, and has innitionized Linguistics, the study of matual languages, by giving it new directions. It has also been extended to programming languages, which are artificial languages, and to the Lambds Calculus, one of usary languages devised by legistans, among whom we can cite Kurt Gödel. Alonzo Church, and Alun Turing, who aspired to standardize mathematical notation and to mechanize proofs. This same idea has regimed sill research on computation theory and programming. Thanks to the results of this research, planes can fix with continuously monitored flight parameters, providing us with unprecedented reliability, this is to because millions of lines of code have been formally proved to be center. Words are strings of symbols taken from theirs alphabets. They constitute the basis clements. They can represent all the information one might with to capture, usaprocess, disseminate or share in a world that is fast becoming more and more "digital," in Gerned Berry emphasized recently in his lactures at the College de Francy. Most information, though represented always by words, is nevertheless structured