Table of Contents

Preface

Chapter 1: The Meaning of Software Architecture
What is software architecture?
ISO/IEC/IEEE 42010 standard definition
What makes up a software architecture?
Software architecture is an abstraction
Software architecture is about the important stuff
Why is software architecture important?
Defining a solution to meet requirements
Enabling and inhibiting quality attributes
Giving you the ability to predict software system qualities
Easing communication among stakeholders
Managing change
Providing a reusable model
Imposing implementation constraints
Improving cost and effort estimates
Serves as training for team members
Software architecture is not a silver bullet
Who are the consumers of software architectures?
What is the software architect role?
Software architects are technical leaders
Software architects perform a number of duties
Ivory tower software architects
What are software architects expected to know?
Don't be overwhelmed
Is the software architect role right for you?
Summary

Chapter 2: Software Architecture in an Organization
Types of software architects
Enterprise architect
Solution architect
Application architect
Data architect/information architect
Infrastructure architect
Information security architect
Cloud architect
Software development methodologies
The Waterfall model

10
11
11
11
12
12
13
13
14
14
15
15
15
16
17
17
18
18
19
19
20
21
22

23

25
26
26
27
27
28
29
30
30
31
32

Table of Contents

Phases of the Waterfall methodology 33

Issues with the Waterfall methodology 34

Agile software development methodologies 34
Agile values and principles 35

An iterative methodology 36
Adaptive rather than predictive 36

Daily stand-up meetings 37
Project management 38
The importance of software project estimation 38
Putting effort into the estimates 38
Being a realist (or even a pessimist) 39
Team and situational factors to consider 39
Project schedule changes 39
Getting a project back on schedule 40
Working overtime 40
Reducing scope 40

Adding resources 41
Reallocating resources 41
Identifying problem areas 42

Acting as early as possible 42
Office politics 42
Understanding your organization's goals 44
Addressing the concerns of others 44
Assisting people with their goals 44
Knowing when to compromise 45
Being aware of cultural differences 45
Software risk management 45
Risk avoidance 47
Transferring the risk to another party 47
Risk mitigation 48
Risk acceptance 48
Configuration management 48
Changing management 49
Software product lines 51
Benefits of a software product line 52
Core assets of an organization 52
Risks of product line engineering 53
Summary 53
Chapter 3: Understanding the Domain 55
Developing business acumen 55
Familiarity with general business topics 56
Understanding your organization's business 57
Domain-driven design 58
Encourages and improves communication 58
What is a ubiquitous language? 59

[ii]

Table of Contents

Entities, value objects, and aggregates
Entities
Value objects
Aggregates and root entities
Separating the domain into subdomains
What are bounded contexts?
Requirements engineering
Types of software requirements
Business requirements
Functional requirements
Non-functional requirements
Constraints
The importance of requirements engineering
Software requirements must be measurable and testable
Software requirements that affect architecture
Requirements elicitation
Techniques to elicit requirements
Interviews
Requirements workshops
Brainstorming
Observation
Focus groups
Surveys
Document analysis
Prototyping
Reverse engineering
Get access to the proper stakeholders

Summary

Chapter 4: Software Quality Attributes
Quality attributes
External or internal
Quality attributes and the SDLC
Testing quality attributes
Maintainability
Types of software maintenance
Corrective maintenance
Perfective maintenance
Adaptive maintenance
Preventive maintenance
Modifiability
Extensibility and flexibility
Scope of modifications
Designing for maintainability
Reducing size
Increasing cohesion
Reducing coupling
Measuring maintainability

61
61
61
62
62
63

65
65
66
66
67
67
68
69
69
70
71
11
71
4
73
74
74
75
75
76
76

I

79
79
80
81
81
82
83
83
83
84
84
84
85
85
85
86
86
86
86

[iii]

Table of Contents

Lines of code (LOC) 87
Cyclomatic complexity 87
Depth of inheritance tree (DIT) 89
Usability 90
Allowing users to complete their tasks efficiently 90
Learnability 90
Providing useful feedback 91
Accessibility 91
Usability needs to be considered during requirements 92
Usability testing 92
Appealing visual design 92
Providing a good help system 94
Software must be useful, and not just usable 94
Availability 94
Calculating availability based on time 95
Calculating availability based on request success rate 96
Faults, errors, and failures 96
Detecting faults 97
Ping/echo reply 97
Heartbeat 97
Timestamp 97
Voting 97
Sanity test/sanity checking 98
Condition monitoring 98
Self-tests 98
Recovering from faults 98
Exception handling 98
Retry strategy 99
Varying levels of redundancy 99
Rollback 100
Graceful degradation 100
Ignoring faulty behavior 100
Preventing faults 101
Removal from service 101
Transactions 101
Increasing competence sets 101
Exception prevention 101
Portability 102
Adaptability 102
Installability 102 ,
Replaceability 103 ;
Internationalization and localization 103
Maintaining portability 105
Interoperability 105
Challenges with interoperability 105
Locating and exchanging information with another system 106
Interoperability standards 107

[iv]

Table of Contents

Interoperability testing
Testability

Controllability

Observability

Isolability

Automatability

Complexity of the software

Importance of test documentation

What makes a good tester?

Summary

Chapter 5: Designing Software Architectures
Software architecture design
Making design decisions
Software architecture design terms
Structure
Element
System
Subsystem
Module
Component
The importance of software architecture design
Making key decisions
Avoiding design decisions can incur technical debt
Communicating the architecture to others
Providing guidance to developers
Influencing non-technical parts of the project
Top-down versus bottom-up design approaches
Top-down approach
Advantages of the top-down approach
Disadvantages of the top-down approach
Bottom-up approach
Advantages of the bottom-up approach
Disadvantages of the bottom-up approach
Which approach should | use?
Greenfield versus brownfield software systems
Greenfield systems
Brownfield systems
Architectural drivers
Design objectives
Primary functional requirements
Quality attribute scenarios
Prioritizing quality attribute scenarios
Constraints
Architectural concerns

Leveraging design principles and existing solutions

107
108
108
109
109
109
110
111
112
113

116
116
116
117
117
118
118
118
118
119
119
119
120
120
121
121
121
121
122
122
123
124
124
125
127
127
128
128
129
130
130
131

131
132
133

[v]

Table of Contents

Selecting a design concept 133
Software architecture patterns 134
Reference architectures 134
Benefits of reference architectures 134
Refactoring a reference architecture for your needs 135
Creating your own reference architecture 135
Tactics 136
Externally developed software 136
Buy or build? 137
Advantages/disadvantages of building 137
Advantages/disadvantages of buying 138
Researching external software 138
Should | use open source software (OSS)? 139
Advantages of using open source software 140
Disadvantages of using open source software 140
Documenting the software architecture design 141
Sketching the architecture design 141
Documenting the design rationale 142
Design rationale for design evaluation 143
Design rationale for design verification 143
Design rationale for design knowledge transfer 143
Design rationale for design communication 144
Design rationale for design maintenance 144
Design rationale for design documentation 144
Design rationale for design reuse 144
Using a systematic approach to software architecture design 145
A general model of software architecture design 146
Architectural analysis 146
Architectural synthesis 147
Architectural evaluation 147
Architecture design is an iterative process 147 §
Selecting an architecture design process 148
Attribute-driven design (ADD) 149
Step 1 — Reviewing inputs 151
Step 2 - Establishing the iteration goal and selecting inputs to be
considered in the iteration 151
Step 3 — Choosing one or more elements of the system to refine 152 8
Step 4 — Choosing one or more design concepts that satisfy the inputs :
considered in the iteration 1528
Step 5 — Instantiating architectural elements, allocating responsibilities, and ‘
defining interfaces 152
Step 6 — Sketching views and recording design decisions 153
Step 7 — Performing analysis of current design and reviewing the iteration |
goal and design objectives 153 ‘
Step 8 — lterating if necessary 153 %
Microsoft's technique for architecture and design 154
Step 1 — Identifying architecture objectives 154

[vi]

Table of Contents

———

Step 2 — Identifying key scenarios

Step 3 — Creating application overview
Determining your application type
Identifying your deployment constraints
Identifying important archijtecture design styles
Determining relevant technologies

Step 4 — Identifying key issyes
Step 5 — Defining candidate solutions
Architecture-centric design method (ACDM)
Step 1 — Discovering architectural drivers
Step 2 — Establishing project scope
Step 3 — Creating notional grchitecture
Step 4 — Architectural review
Step 5 — Production go/na-go
Step 6 — Experiment planning
Step 7 — Experimenting with and refining the architecture
Production planning and production
Architecture development method (ADM)
The Open Group Architectyre Framework (TOGAF)
TOGAF architecture domains
TOGAF documentation
Phases of the ADM
Phase A — Architecture visjon
Phase B — Business archjtecture
Phase C - Information systems architectures
Phase D — Technology architecture
Phase E - Opportunities and solutions
Phase F — Migration planning
Phase G - Implementation governance
Phase H — Architecture change management
Tracking the progress of the software architecture's design
Using a backlog to track the architecture design progress
Prioritizing the backlog
DIVE criteria
Dependencies
Insure against risks

Business value
Estimated effort

Active and dynamic architecture backlogs
Summary

Chapter 6: Software Development Principles and Practices
Designing orthogonal software systems
Loose coupling

Types of coupling
Content coupling
Common coupling
External coupling

155
155
156
156
156
156
157
157
157
159
159
159
159
160
160
160
161
161
161
162
162
163
164
164
165
165
165
166
166
166
166
167
167
168
168
168
168
168
168

169

171
172

172
173
173
173
174

~— [wviil

Table of Contents

Control coupling
Stamp coupling (data-structured coupling)
Data coupling
Message coupling
No coupling
The Law of Demeter (LoD) / principle of least knowledge
Designing for loose coupling
High cohesion
Types of cohesion
Coincidental cohesion
Logical cohesion
Temporal cohesion
Procedural cohesion
Communicational cohesion
Sequential cohesion
Functional cohesion
Designing for high cohesion
Minimizing complexity
KISS principle — "Keep It Simple, Stupid”
Origin of KISS
Applying KISS to software
Don't make it overly simple
DRY - "Don't Repeat Yourself"
Copy-and-paste programming
Magic strings
How to avoid duplication
Don't make things overly DRY
Information hiding
Reasons for information hiding
What needs to be exposed/hidden?
YAGNI - "You Aren't Gonna Need It"
Avoid over-engineering a solution
Situations where YAGNI doesn't apply
Separation of Concerns (SoC)
Following SOLID design principles
Single Responsibility Principle (SRP)
Open/Closed Principle (OCP)
Liskov Substitution Principle (LSP)
Interface Segregation Principle (ISP)
Dependency Inversion Principle (DIP)
Inversion of Control (IoC)
Dependency Injection (DI)
Benefits of DI
DI patterns
DI containers
Helping your team succeed
Unit testing
What are unit tests?
Benefits of unit testing
Properties of a good unit test

174
174
174
175
175

175
175
176
176

177
177

178
178
178
179
179
180
180
181
181
182
182
182
184
184
184
185
185
186
186
186
187
188
188
191
193
195
198
199
200
200
201
204
205
205
205
206
206

[viii]

Table of Contents

Atomic
Deterministic
Automated and repeatable
Isolated and independent
Easy to set up and implement
Fast
The AAA pattern
Arrange
Act
Assert
Naming conventions for unit tests
Unit test class names
Unit test method names
Code coverage for unit tests
Keeping unit tests up to date
Setting up development environments
Providing a README file
Pair programming
Benefits of pair programming
Using pair programming when it is needed
Reviewing deliverables
Code reviews
Formal inspections
Roles for a formal inspection
Inspection meeting and follow-up
Walkthroughs

Summary

Chapter 7: Software Architecture Patterns
Software architecture patterns
Using software architecture patterns
Overusing architecture patterns

206
207
207
207
207
207
208
208
208
208
208
209
209
209
210
210
211

212
212
213
213
213
214
215
215
216

216

4 I 4
218
218
219

Understanding the difference between architecture styles and architecture

patterns
Layered architecture
Open versus closed layers
Tiers versus layers
Advantages of layered architectures
Disadvantages of layered architectures

Client-server architecture (two-tier architecture)
Using stored procedures for application logic

N-tier architecture
Presentation tier
Business tier
Data tier

Event-driven architecture

Event channels

Message queues
The point-to-point channel pattern

Message topics

219
220
220
221
222
223
224
225
226
227
227
228
228
228
229
229
229

[ix]

Table of Contents

The publish-subscribe pattern
Event-driven architecture topologies
The mediator topology
Event mediator implementations
The broker topology
Event processing styles
Simple event processing (SEP)
Event stream processing (ESP)
Complex event processing (CEP)
Types of event-driven functionality
Event notification
Event-carried state transfer
Event-sourcing
The Model-View-Controller pattern
Model
View
Controller
Advantages of the MVC pattern
Disadvantages of the MVC pattern
The Model-View-Presenter pattern
Model
View
Presenter
The Model-View-ViewModel pattern
Model
View
ViewModel
The Command Query Responsibility Segregation pattern
The query model and the command model
Using event-sourcing with CQRS
Advantages of CQRS
Disadvantages of CQRS
Service-oriented architecture
What makes SOA different from other distributed solutions?
Benefits of using a SOA
Increases alignment between business and technology
Promotes federation within an organization
Allows for vendor diversity
Increases intrinsic interoperability
Works well with agile development methodologies
Cost-benefit analysis of SOA
Challenges with SOA
Key principles for service orientation
Standardized service contract
Service loose coupling
Service abstraction
Service reusability

NNONNNDNDNN
w

w W

2
2
2
2
2
2
2
2
2 W

[x]

Table of Contents

Service autonomy
Service statelessness
Service discoverability
Service composability
SOA delivery strategies
The top-down strategy
The bottom-up strategy
The agile strategy
Service-oriented analysis
Defining business automation requirements
Identifying existing automation systems
Modeling candidate services
Service layers and service models
Task service
Entity service
Utility service
Service-oriented design
Service interface design
Service interface granularity
Service registries
Service descriptions
Structuring namespaces
Orchestration and choreography

Summary

Chapter 8: Architecting Modern Applications
Monolithic architecture
Benefits of a monolithic architecture
Drawbacks of a monolithic architecture
Microservice architecture
SOA done right
Characteristics of microservice architecture
Small, focused services
Well-defined service interfaces
Autonomous and independently deployable services
Independent data storage
Better fault isolation
Communicating with lightweight message protocols
Designing polyglot microservices
Polyglot programming
Polyglot persistence
Using too many technologies
Considering service granularity
Nanoservices
Sharing dependencies between microservices
Stateless versus stateful microservices
Service discovery

Using a service registry
Self-registration pattern

251
252
252
252
252
253
253
254
254
254
255
255
255
257
257
257
257
258
259
259
260
261
262

263

265
265
266
267
268
268
269
269
270
270
270
271
271
272
273
273
274
274
274
275
276
276

276
277

[xi]

Table of Contents

Third-party registration pattern
Types of service discovery
Client-side discovery pattern
Server-side discovery pattern
Using microservices is not for everyone
Serverless architecture
Function as a Service (FaaS)
Backend as a Service (BaaS)
Advantages of serverless architectures
Cost savings
Scalable and flexible
Focus on building your core products
Polyglot development
Disadvantages of serverless architectures
Difficulties with debugging and monitoring
Multitenancy issues
Vendor lock-in
Complexity of designing many functions
Not as many runtime optimizations
Still immature
Taking a hybrid approach to serverless
Function deployment
Function invocation
Synchronous request
Asynchronous request (message queue)
Message stream
Batch job
Cloud-native applications
Reasons to move to the cloud
Reducing costs
Greater flexibility and scalability
Automatic updates
Disaster recovery
What are cloud-native applications?
Containerized
Dynamically orchestrated
Microservices-oriented
No downtime
Continuous delivery
Support for a variety of devices
Twelve-factor apps
Codebase
Dependencies
Configuration
Backing services
Build/Release/Run
Processes
Port binding
Concurrency

277

278
279
279

280

281
282
283
284
284
284
284
285
285
285
285
286
286
286
286
287
287
288
288
289
289
290
290
291
291
291
291
292
292
292
293
294
294
294
295
295
296
296
297
297
297
298
298
299

[xii]

Table of Contents

Disposability 299
Development/production parity 209

Logs 300
Administrative processes 300
Summary 301
Chapter 9: Cross-Cutting Concerns 303
Cross-cutting concerns 304
General guidelines for cross-cutting concerns 305
Identifying cross-cutting concerns 305
Using open-source and third-party solutions 305
Maintaining consistency 305
Avoiding scattered solutions 306
Avoiding tangled solutions 306
Implementing cross-cutting concerns 307
Using dependency injection (DI) 307
Using the decorator pattern 308
Aspect-oriented programming 312
Types of advice 313
Weaving 314
Compile-time weaving 315
Runtime weaving 315
Types of cross-cutting concerns 316
Caching 316
Configuration management 317
Auditing 318
Security 318
Exception management 318
Logging 319
Understanding log levels 319
Routing log entries 320

Using Elastic Stack 321
Elasticsearch 321

Logstash 322

Kibana 322

Beats 323
Cross-cutting concerns for microservices 323
Leveraging a microservice chassis 323
Using the sidecar pattern 324
Summary 326
Chapter 10: Performance Considerations 327
The importance of performance 327
Performance affects user experience 328
Bounce rate 328
Conversion rate 328
Performance is a requirement 329

[xiii]

Table of Contents

Page speed affects search rankings
Defining performance terminology
Latency
Throughput
Bandwidth
Processing time
Response time
Workload
Utilization
Taking a systematic approach to performance improvement
Profiling an application
Instrumentation
Statistical profilers
Analyzing the results
Implementing changes
Monitoring results
Server-side caching
Caching data in distributed applications
Using a private caching strategy
Using a shared caching strategy
Priming the cache
Invalidating cached data
Expiring data
Evicting data
Cache usage patterns
Cache-aside pattern
Read-through pattern
Wirite-through pattern
Write-behind pattern
Improving web application performance
Leveraging HTTP caching
Using a validation token
Specifying cache-control directives
Taking advantage of compression
File compression
Lossless compression
Lossy compression
Content-encoding (end-to-end) compression
Minifying resources
Bundling resources
Using HTTP/2
Multiplexing
Server push
Header compression
Implementing HTTP/2
Using content delivery networks (CDNs)
Optimizing web fonts

[xiv]

Table of Contents

Optimizing the critical rendering path

Database performance

Designing an efficient database schema
Normalizing a database
Denormalizing a database
Identifying primary and foreign keys
Selecting the most appropriate data types

Using database indexes
Primary/clustered indexes
Secondary/non-clustered indexes
Having too many indexes

Scaling up and out

Database concurrency
Database transactions

Optimistic versus pessimistic concurrency control

CAP theorem
ACID model
Atomicity
Consistency
Isolation
Durability
BASE model
Basic availability
Soft state
Eventual consistency

Summary

Chapter 11: Security Considerations

Securing software systems
The three states of information
The CIA triad

Confidentiality
Integrity
Availability

Threat modeling
Decomposing an application
Identifying and categorizing potential threats

STRIDE threat model
Spoofing identity
Tampering with data
Repudiation
Information disclosure
Denial-of-service
Elevation of Privilege

Prioritizing potential threats

DREAD risk assessment model
Damage potential
Reproducibility
Exploitability
Affected users

352
353
353
353
354
354
355
355
355
356
356
357
358
358
358
359
360
360
360
360
361
361
361
361
361

362

363
364
364
365
365
365
366

366
367

367
368
368
368
368
369
369
369
369
370
370
370
371
371

[xv]

Table of Contents

Discoverability 371
Responses to threats 371
Avoiding the risk 372
Transferring the risk 372
Accepting the risk 372
Mitigating the risk 373
Types of security control 373
Physical security controls 373
Administrative controls 374
Technical security controls 375
Prevention 375
Detection 376
Response 376
Secure by design 376
Minimizing the attack surface 377
Defense in depth 377
Principle of least privilege (PoLP) 377
Avoiding security by obscurity 378
Keep software designs simple 378
Secure by default 378
Default deny 379
Validating input 379
Secure the weakest link 379
Security must be usable 379
Fail securely 380
Cryptography 380
Encryption 380
Symmetric (secret key) encryption 381
Asymmetric (public key) encryption 381
Cryptographic hash functions 381
Identity and access management (I1AM) 383
Authentication 383
What is multi-factor authentication (MFA)? 384
Authorization 384
Storing plaintext passwords 385
Storing encrypted passwords 385
Storing hashed passwords 385
Using domain authentication 386
Implementing a centralized identity provider (IdP) 386
OAuth 2/OpenlID Connect (OIDC) 387
OAuth 2 roles 387
JSON web token (JWT) 388
Header 389

Payload 389
Signature 390
Authorizing with the authorization server 390
Most common web application security risks 391
Injection 391

[xvi]

Table of Contents

Broken authentication

Sensitive data exposure

XML external entity (XXE) attack

Broken access control

Security misconfiguration

Cross-site scripting (XSS)

Insecure deserialization

Using components with known vulnerable components
Insufficient logging and monitoring

Unvalidated redirects and forwards

Summary

Chapter 12: Documenting and Reviewing Software Architectures

Uses of software architecture documentation
Communicating your architecture to others
Assisting the development team
Educates team members
Providing input for software architecture reviews
Allowing for the reuse of architectural knowledge
Help the software architect

Creating architecture descriptions (ADs)
Software architecture views

Software architecture notations
Informal software architecture notations
Semiformal software architecture notations
Formal software architecture notations
Including design rationales
Overview of the Unified Modeling Language (UML)
Types of modeling
Class diagrams
Visibility
Association
Aggregation
Composition
Multiplicity
Dependency
Generalization/specialization
Realization
Component diagrams
Package diagrams
Deployment diagrams
Use case diagrams
Sequence diagrams
Lifeline
Activation boxes
Messages
Loops
Optional flows
Alternative flows
Activity diagrams

391
392
392
394
394
395
395
396
396
397
397

399

400
400
401
401
401
402
402

403
403
404
404
405
405
406
407
407
407
408
408
409
410
410
411
411
412
413
415
416
417
419
420
420
420
421
422
422
423

[xvii]

Table of Contents

Start/end nodes 424
Actions/Control flow 425
Decision/merge nodes 425
Fork/join nodes A2
Reviewing software architectures 426
Software architecture analysis method (SAAM) 427
Scenario-based analysis of software architecture 427
SAAM steps 428
Step 1 — Develop scenarios 428
Step 2 — Describe the architecture 428
Step 3 — Classify and prioritize scenarios 428
Step 4 - Evaluate scenarios 429
Step 5 — Assess scenario interaction 429
Step 6 — Create an overall evaluation 429
Architecture tradeoff analysis method (ATAM) 430
ATAM participant roles 430
ATAM phases 430
Phase 0 — Partnership and preparation 431
Phase 1 — Evaluation 431
Phase 2 — Evaluation (continued) 434
Phase 3 — Follow-up 435
Active design review (ADR) 435
ADR steps 436
Step 1 — Prepare the documentation for review 436
Step 2 — Identify the specialized reviews 437
Step 3 — Identify the reviewers needed 437
Step 4 — Design the questionnaires 437
Step 5 — Conduct the review 437
Active reviews of intermediate designs (ARID) 438
ARID participant roles 438
ARID phases 438
Phase 1 — Pre-meeting 439
Phase 2 — Review meeting 440
Summary 441
Chapter 13: DevOps and Software Architecture 443
DevOps 444
CALMS 444
Culture 445
Automation 446
Lean 447
Measurement 448
Sharing 448
Why DevOps? 448
DevOps toolchain 449
DevOps practices 451
Continuous integration (Cl) 452
Automated builds 452
Software versioning 453
Automated testing 454
Continuous delivery (CD) 455

[xwviii]

Table of Contents

Continuous deployment
Architecting for DevOps
Important quality attributes for DevOps
Some architecture patterns complement DevOps
Deploying to the cloud
Cloud types
Public cloud
Private cloud
Hybrid cloud
Cloud models
Infrastructure as a service (laaS)
Containers as a Service (CaaS)
Platform as a Service (PaaS)
Serverless/Function as a Service (FaaS)
Software as a Service (SaaS)

Summary

Chapter 14: Architecting Legacy Applications
Legacy applications
Issues with legacy applications
Why are legacy applications used?
More than just code
Refactoring legacy applications
Making legacy code testable
Benefits of unit testing
Refactoring for unit tests
Where to start writing tests?
Removing redundant code
Unreachable code
Dead code
Commented-out code
Duplicate code
Using tools to refactor
Making small, incremental changes
Transforming monoliths to microservices
Migrating to the cloud
The 6 R's
Remove (or retire)
Retain
Replatform
Rehost
Repurchase
Refactor (or re-architect)
Moving to an agile approach
Modernizing build and deployment processes
Automating the build and deployment processes
Practicing continuous integration (ClI)

455

456
456
458
458
459
459
459
460
461
462
463
465
466
466

467

469

469
470
471
472

472
473
473
474
474
475
475
476
476
476
477
477
477
478
479
479
479
480
480
480
480
481
481
482
482

[xix]

Table of Contents

Practicing continuous delivery (CD)
Updating the build tools

Integrating with legacy applications
Confirming the need for integration
Determining the type of integration
Sharing functionality between systems
Performing data integration

Summary

Chapter 15: The Soft Skills of Software Architects
Soft skills
Communication
Communicating the architecture
Communicating about quality attributes
Communicating expectations
The 7 Cs of communication
Clarity
Conciseness
Concreteness
Courteousness
Consideration
Correctness
Completeness
Listening skills
Hearing is not listening
Showing empathy
Tips for effective listening
Giving presentations
The 4 Ps of presentations
Plan
Prepare
Practice
Present

Leadership
Getting others to follow you
Dealing with challenges
Being a technical leader
Taking responsibility
Focusing on others
Delegating tasks
Driving change
Communication and leadership
Mentoring others
Leading by example
Depending on others
Negotiation
How negotiation skills may be used

483
483

483

484
484

485
485
485

487
487
488

488

489

489

489
490
490
491
491
491
492
492
493
493
493
493
494
495
495
495
496
497
497
497
498
498
498
499
499
500
500
501
501
502
502
503

[xx]

Table of Contents

—————

Informal/formal negotiations
Working with remote resources
Benefits of using remote resources
Challenges when using remote resources
Communication
Cultural differences
Impromptu meetings
New employee onboarding
Work quality
Confidential company data
Summary

Chapter 16: Evolutionary Architecture
Change is inevitable
Reasons for change
Expecting change
Lehman's laws of software evolution
Lehman's software categories
S-type systems
P-type systems
E-type systems
The laws
Law | = Continuing change
Law Il = Increasing complexity
Law Il — Self-regulation
Law IV — Conservation of organizational stability
Law V - Conservation of familiarity
Law VI - Continuing growth
Law VIl - Declining quality
Law VIl - Feedback system
Designing evolutionary architectures
Making guided architectural changes
Fitness functions

Categories of fitness functions
Examples of fitness functions

Making incremental changes
Architectural changes across multiple dimensions
Loosely coupled architectures
Designing evolvable APIs
Applying Postel's Law to APIs
Using standards in your software system
Last responsible moment (LRM)
Summary

Chapter 17: Becoming a Better Software Architect
Practicing continuous learning
Improving the breadth and depth of your knowledge
Avoiding the law of the instrument

503

505
505
505
506
506
506
506
507
507

508

509
509
510
510
511
511
511
512
512
512
513
513
513
514
514
514
514
515
515
516
516

517
518

519
520
520

521
522

522
523
523

525
526
526
527

[xxi]

Table of Contents

Finding the time for learning
Ways to keep your skills sharp
Participating in open source projects
Creating your own open source project
Writing your own blog
Increasing your visibility
Starting your own blog
Things to avoid
Spending time teaching others
Finding opportunities to teach
Being a mentor
Trying new technologies
Continuing to write code
Assigning yourself coding tasks
Working on your own project
Reading code
Attending user groups and conferences
Presenting at a user group or conference
Meeting new people
Taking responsibility for your work
Attending to your well-being
Being proud of your work
Summary

Other Books You May Enjoy
Index

[xxii]

