
table of contents

Table of Contents (summary)
In tro X X V

1 Welcome to Design Patterns: intro to Design Patterns 1

2 Keeping your Objects in the K now : the Observer Pattern 37

3 Decorating Objects: the Decorator Pattern 79

4 Baking w ith O O Goodness: the Factory Pattern 109

5 O ne-o f-a -K ind Objects: the Singleton Pattern 169

6 Encapsulating Invocation: the Command Pattern 191

7 Being Adaptive: the Adapter and Facade Patterns 237

8 Encapsulating A lgorithm s: theTemplate Method Pattern 277

9 W ell-M anaged Collections: the Iterator and Composite Patterns 317

10 The State o f Things: the State Pattern 381

11 C ontro lling O bject Access: the Proxy Pattern 425

12 Patterns o f Patterns: compound patterns 493

13 Patterns in the Real W orld: better living with patterns 563

14 Appendix: Leftover Patterns 597

In tro
Your brain on Design Patterns. Here you are trying to learn something,

while here your brain is doing you a favor by making sure the learning doesn't stick. Your

brain's thinking, "Better leave room for more important things, like which wild animals to

avoid and whether naked snowboarding is a bad idea." So how do you trick your brain into

thinking that your life depends on knowing Design Patterns?

W ho is this book for? xxv i

We know w hat you’re th inking. xxv ii

A n d we know w hat your b ra in is th inking. xxv ii

We th in k o f a “ H ead F irs t” reader as a learner. x x v iii

M etacogn ition : th in k in g about th ink in g xx ix

H ere ’s w hat W E d id xxx

H ere ’s w hat Y O U can do to bend your b ra in in to submission xxx i

Read M e xxx ii

Tech Reviewers xxx iv

Acknowledgm ents xxxv

írrtro is Design pctttems

W elcom e to Design P atterns
Someone has already solved your problems, in this

chapter, you’ll learn why (and how) you can exploit the wisdom and lessons

learned by other developers who’ve been down the same design problem road

and survived the trip. Before we’re done, we’ll look at the use and benefits

of design patterns, look at some key object-oriented (0 0) design principles,

and walk through an example of how one pattern works. The best way to use

patterns is to load your brain with them and then recognize places in your

designs and existing applications where you can apply them. Instead of code

reuse, with patterns you get experience reuse.

I t started w ith a simple S im U D uck app

B u t now we need the ducks to FLY

Remember, knowing
concepts like abstraction,

inheritance, and polymorphism do
not make you a good object oriented

designer. A design guru thinks
about how to create flexible
designs tha t are maintainable

and tha t can cope with
change.

c-

і

*

B u t som ething w ent h o rr ib ly w ro n g ...

Joe thinks about inhe ritance ...

H ow about an interface?

W hat w ou ld you do i f you were Joe?

The one constant in software development

Zero ing in on the p ro b le m ...

Separating w hat changes from w hat stays the same

Designing the D uck Behaviors

Im p lem en ting the D uck Behaviors

In teg ra ting the D uck Behavior

Testing the D uck code

Setting behavior dynam ica lly

T he B ig P icture on encapsulated behaviors

H A S -A can be better than IS -A

Speaking o f Design Patterns...

O verheard at the local d in e r...

2
3

4

5

6

7

8

9

10

11

13

15

18

20

22

23

24

26

Vt£І
-с
sа

O BSER VER

ч

о

O verheard in the next cub ic le ...

The pow er o f a shared pa tte rn vocabulary

H o w do I use Design Patterns?

Tools fo r your Design Toolbox

M Ыі-С шТ0Мл/г.*4Ы*г ' a Y o u r C ode , n * " " f "

a»d w *rr *« d ^
des*!

27

28

29

32

table of contents

the Observer Pattern

2 Keeping your O bjects in th e Know
You don’t want to miss out when something

interesting happens, do you? We’ve got a pattern that keeps your

objects in the know when something they care about happens. It’s the Observer

Pattern. It is one of the most commonly used design patterns, and it’s incredibly

useful. We’re going to look at all kinds of interesting aspects of Observer, like its

one-to-many relationships and loose coupling. And, with those concepts in mind,

how can you help but be the life of the Patterns Party?
T he W eather M o n ito rin g app lica tion overview

M eet the Observer Pattern

Publishers + Subscribers = Observer Pattern

T he Observer Pattern defined

T he Power o f Loose C oup ling

Designing the W eather Station

Im p lem enting the W eather Station

Power up the W eather Station

Looking fo r the Observer Pattern in the W ild

C od ing the life-changing applica tion

M eanw hile, back at W eather-O -R am a

Test D rive the new code

Tools fo r your Design Toolbox

Design P rincip le Challenge

51

66

58

45

44

69

39

65

61

57

54

72

71

73

L I -I onb то many relationship

í ' - ä Q 'r o, o.
ôuckC*̂ Cot Oo'ŕ

' Q,о̂иѕг 0°̂
Auboma-tid upda-U/m rbf ідоЬі

the Decorator Pattern

3 D ecorating O bjects
Just call this chapter “Design Eye for the Inheritance

Guy.” We’ll re-examine the typical overuse of inheritance and you’ll learn how

to decorate your classes at runtime using a form of object composition. Why?

Once you know the techniques of decorating, you’ll be able to give your (or

someone else’s) objects new responsibilities without making any code changes

to the underlying classes.
W elcome to Starbuzz Coffee 80

T he O pen-C losed P rincip le 86

M eet the D ecora tor Pattern 88

C onstructing a d rin k order w ith Decorators 89

T he D ecora tor Pattern defined 91

D ecora ting our Beverages 92

W ritin g the Starbuzz code 95

C od ing beverages 96

C od ing condim ents 97

Serving some coffees 98

R eal-W orld Decorators: Java I / О 100

D ecorating the java .io classes 101

W ritin g your own Java I / O D ecora tor 102

Test ou t your new Java I / О D ecora tor 103

Tools fo r your Design Toolbox 105

I used to think real men
subclassed everything. That was until
I learned the power of extension
at runtime, rather than at compile

time. Now look at me!

table of contents

the Factory Pattern

Baking w ith OO Goodness
Get ready to bake some loosely coupled OO designs
There is more to making objects than just using the new operator. You’ll

learn that instantiation is an activity that shouldn’t always be done in public

and can often lead to coupling problems. And we don’t want that, do we?

Find out how Factory Patterns can help save you from embarrassing

dependencies.

. fer М ыл b * . «•

pi
& ****' ’* to
»кв»

*»•«
>«• t* ftfU tu
cfcjrtb tU» •**-

С

TU ettefcb eí Ih*
Ü e b Y *n » .b .
«jboMt Л РожлЅп**.
fŕv^iouft#-« »-ó
b o y tb + fm d i**

■тиічшшчгыіит — OM—*—NWfM»nr
•пяШЬчЧ írMOMlHO

« М
Ul0»l«0 —»омч
Ii—H4ffi| ' — >»4

IľľST*

c ° o ° 2?

o 0 9 ,e
'o O

Id e n tify in g the aspects tha t vary 112

Encapsulating object creation 114

B u ild ing a simple pizza factory 115

The S im ple Factory defined 117

A fram ew ork fo r the pizza store 120

A llo w in g the subclasses to decide 121

D eclaring a facto ry m ethod 125

I t ’s fin a lly tim e to meet the Factory M e thod Pattern 131

V iew Creators and Products in Parallel 132

Factory M e thod Pattern defined 134

Looking at object dependencies 138

T he Dependency Inversion P rincip le 139

A p p ly in g the P rincip le 140

Families o f ingred ients... 145

B u ild ing the ingred ient factories 146

R ew orking the p izzas... 149

R evisiting ou r pizza stores 152

W ha t have we done? 153

A bstract Factory Pattern defined 156

Factory M e thod and A bstract Factory compared 160

Tools fo r your Design Toolbox 162

the Singleton Pattern

One-of-a-K ind O bjects
Our next stop is the Singleton Pattern, our ticket to
creating one-of-a-kind objects for which there is only
ОПѲ instance, ѲѴѲГ. You might be happy to know that of all patterns,

the Singleton is the simplest in terms of its class diagram; in fact, the diagram

holds just a single class! But don’t get too comfortable; despite its simplicity

from a class design perspective, it’s going to require some deep object-oriented

thinking in its implementation. So put on that thinking cap, and let’s get going.

Dissecting the classic S ingleton Pattern im p lem enta tion 17 3

T he Chocolate Factory 175

Singleton Pattern defined 17 7
PA

•, we have a prob lem 17 8

D ealing w ith m u ltith read ing 180

Can we im prove m ultithreading? 181

M eanw hile, back at the Chocolate F a c to ry ... 183

Tools fo r your Design Toolbox 186

4 _ prS'A're a

x a*A Г **

0 0 p a t u * ! *

table of contents

the Command pattern

Encapsulating Invocation

In this chapter, we take encapsulation to a whole new
level: we’re going to encapsulate method invocation.
That’s right-—by encapsulating method invocation, we can crystallize pieces

of computation so that the object invoking the computation doesn’t need to

worry about how to do things, it just uses our crystallized method to get it

done. We can also do some wickedly smart things with these encapsulated

method invocations, like save them away for logging or reuse them to

implement undo functionality in our code.

H om e A u tom ation o r Bust

O u r firs t com m and object

IVodWr. ike

W hat are we doing?

192

Taking a look at the vendor classes 194

A b r ie f in troduc tion to the C om m and Pattern 197

From the D in e r to the C om m and Pattern 201

203

U sing the com m and object 204

Assigning Com m ands to slots 209

Im p lem en ting the Remote C on tro l 210

Im p lem en ting the Com m ands 211

тѵаи Order P u tting the Rem ote C on tro l th rough its paces 212
Coefc (o llo+ i

£ťvír*ŕ T im e to w rite that docum enta tion ... 215

217

T im e to Q A that U nd o button ! 220

U sing state to im plem ent U ndo 221

A dd ing U ndo to the C e iling Fan commands 222

Every rem ote needs a Party M ode! 225

U sing a m acro com m and 226

M ore uses o f the C om m and Pattern: queuing requests 229

M ore uses o f the C om m and Pattern: logging requests 230

C om m and Pattern in the Real W orld 231

Tools fo r your Design Toolbox 233

Г Г o ' * *

kl

TV Ь*"5
- к Я Kí dna
t r t & t l І»

F

- д - V *
TW

re«'

• t í f í S i m akeB urgerO , m akeShakeO

the Adapter and Facade patterns

Being A daptive

In this chapter we’re going to attempt such impossible
feats as putting a square peg in a round hole. Sound

impossible? Not when we have Design Patterns. Remember the Decorator

Pattern? We wrapped objects to give them new responsibilities. Now we’re

going to wrap some objects with a different purpose: to make their interfaces look

like something they’re not. Why would we do that? So we can adapt a design

expecting one interface to a class that implements a different interface. That’s not

all; while we’re at it, we’re going to look at another pattern that wraps objects to

simplify their interface.

Adapters a ll around us

O b ject-oriented adapters

I f i t walks like a duck and quacks like a duck, then it must
m igh t be a duck turkey w rapped w ith a duck adap te r...

Test drive the adapter

T he A dapter Pattern explained

A dap te r Pattern defined

O b ject and class adapters

R eal-w orld adapters

A dap ting an Enum eration to an Ite ra to r

H om e Sweet H om e Theater

W atching a movie (the hard way)

Lights, Cam era, Facade!

C onstructing your home theater facade

Im p lem enting the sim plified interface

T im e to watch a movie (the easy way)

Facade Pattern defined

The P rincip le o f Least Know ledge

H ow N O T to W in Friends and Influence Objects

The Facade Pattern and the P rincip le o f Least Know ledge

Tools fo r your Design Toolbox

238
British Wall Outlet 239

AC Power Adapter

240

242

243

245

246

250

251

257

258

260

Standard AC Plug

263

264

265

266

267

268

271

272

table of contents

the Template Method Pattern

Encapsulating A lgorithm s
We’ve encapsulated object creation, method invocation,
complex interfaces, ducks, pizzas...what could be next?
We’re going to get down to encapsulating pieces of algorithms so that subclasses

can hook themselves right into a computation anytime they want. We’re even

going to learn about a design principle inspired by Hollywood. Let’s get started...

tea
0 Ю« so we water
О tea»« «.*•***
q poor tea In a cop
0 Mdlewon

Wf'vc retô nizid

b x two rećipe* 9 r t

а и л іи ііу £k* іЛгті,
io*,c of is«

«i«fi rty*rt different
imfl«mentab«»S So

Wf're ynevilited tke
rtC 'ft ihd f l *ud l i m

Ы bis« tlšU.

erallze

Caffeine leverage
О *oll tome water

Irew
relies on
subclass fo r
som e steps

Tea

Ѳ Pbur beverage In a cup

О Add condiment*

O Steep th e teabag in the wafer

О Add lemon

T
OH—
the
«t«‘ -

Coffee
° hl *»•**«

*** berth,
о Pbur

О A*,

grinds

в Cup

generalize

relies on
subclass fo r
some steps

btt*

0 »rew the OOftee erlndl
0 Add wear and

I t ’s tim e fo r some m ore caffeine

W h ipp ing up some coffee and tea classes (in Java)

L e t’s abstract tha t Coffee and Tea

Taking the design fu rth e r...

A bstracting prepareRecipeO

W hat have we done?

M eet the Tem plate M e thod

W hat d id the Tem plate M e thod get us?

Tem plate M e thod Pattern defined

H ooked on Tem plate M e th o d ...

U sing the hook

The H o llyw ood P rincip le and Tem plate M e thod

Tem plate M ethods in the W ild

S orting w ith Tem plate M e thod

W e’ve got some ducks to s o rt...

W hat is compareToO?

C om paring Ducks and Ducks

L e t’s sort some Ducks

The m aking o f the sorting duck machine

Sw ingin ’ w ith Frames

Custom Lists w ith A bstractL ist

Tools fo r your Design Toolbox

278

279

282

283

284

287

288

290

291

294

295

299

301

302

303

303

304

305

306

308

309

313

the iterator and Composite Patterns

Well-Managed Collections
There are lots of ways to stuff objects into a collection.

4

Put them into an Array, a Stack, a List, a hash map—take your pick. Each has its

own advantages and tradeoffs. But at some point your clients are going to want

to iterate over those objects, and when they do, are you going to show them your

implementation? We certainly hope not! That just wouldn’t be professional. Well, you

don’t have to risk your career; in this chapter you’re going to see how you can allow

your clients to iterate through your objects without ever getting a peek at how you

store your objects. You’re also going to learn how to create some super collections of

objects that can leap over some impressive data structures in a single bound. And if

that’s not enough, you’re also going to learn a thing or two about object responsibility.

Pancake M enu

Оо

r
nrnyL'<*i

Pfner Menu

Q

Pessert Menu

Q

Café Menu

í< ŕ ú
C Q
STQ
ч Г й)

m

Breaking News: O b jectv ille D in e r and O b jectv ille Pancake House M erge

Check ou t the M enu Items

Im p lem enting the spec: our firs t attem pt

Can we encapsulate the iteration?

M eet the Ite ra to r Pattern

A d d in g an Ite ra to r to D ine rM enu

R ew orking the D ine rM enu w ith Ite ra to r

F ix ing up the Waitress code

Testing our code

Review ing our curren t design...

C leaning things up w ith ja va .u til.Ite ra to r

Ite ra to r Pattern defined

T he Ite ra to r Pattern S tructure

T he Single R esponsibility P rincip le

M eet Java’s Iterab le interface

Java’s enhanced fo r loop

Taking a look at the Café M enu

Ite ra tors and Collections

Is the Waitress ready fo r p rim e time?

T he Com posite Pattern defined

D esigning M enus w ith Com posite

Im p lem enting M enuC om ponent

Im p lem enting the M e nu ltem

Im p lem enting the Com posite M enu

N ow fo r the test d riv e ...

318

319

323

325

327

328

329

330

331

333

335

338

339

340

343

344

347

353

355

360

363

364

365

366

369

Tools fo r your Design Toolbox 376

table of contents

tbe Stat® Tattem

The State of Things

A little-known fact: the Strategy and State Patterns were
twins separated at birth. You’d think they’d live similar lives, but the Strategy

Pattern went on to create a wildly successful business around interchangeable algorithms,

while State took the perhaps more noble path of helping objects to control their behavior

by changing their internal state. As different as their paths became, however, underneath

you’ll find almost precisely the same design. How can that be? As you’ll see, Strategy

and State have very different intents. First, let’s dig in and see what the State Pattern is all

about, and then we’ll return to explore their relationship at the end of the chapter.

Mighty біюЫМпс
• л *« * th* GuTba'i Macbr*

frnwy

t i t r t ' i t> * way * * t k lr k tn e C o n tro lle r r*e d i
w ork M t 'r t kopirvj you d a * im plem ent tb u m Java fo r * 1 W t may
be аао*»з м и с L c h ir tr r - íu tw « , to you n t td t o keep tk e

des*y» as fle*«b!e and *»amtai*abfe as рляЫ е'

- Alijbty ̂ umball řn̂neer*

< #

Ч

Java Breakers

State machines 101

W ritin g the code

In-house testing

You knew it was co m in g .. .a change request!

The messy S TA TE o f th ings...

The new design

D e fin ing the State interfaces and classes

R ew orking the G um ball M achine

382

384

386

388

390

392

394

395

398

Now, le t’s look at the com plete G um ba llM ach ine class... 399

Im p lem enting m ore states

T he State Pattern defined

We still need to fin ish the G um ball 1 in 10 game

F in ish ing the game

Dem o fo r the C E O o f M ig h ty G um ball, Inc

Sanity check...

We almost forgot!

Tools fo r your Design Toolbox

400

406

409

410

411

413

416

419

-the Proxy Pattem

Contro lling O b ject A ccess

ЕѴѲГ play good cop, bad cop? You’re the good cop and you provide

ail your services in a nice and friendly manner, but you don’t want everyone asking

you for services, so you have the bad cop control access to you. That’s what proxies

do: control and manage access. As you’re going to see, there are lots of ways in

which proxies stand in for the objects they proxy. Proxies have been known to haul

entire method calls over the internet for their proxied objects; they’ve also been

known to patiently stand in for some pretty lazy objects.

C oding the M o n ito r 427

Testing the M o n ito r 428

Remote methods 101 433

G etting the G um ba llM ach ine ready to be a rem ote service 446

Registering w ith the R M I reg is try ...

GEEKmatdimaking

The Proxy Pattern defined

G et ready fo r the V irtu a l Proxy

D esigning the A lbu m Cover V irtu a l Proxy

W ritin g the Image Proxy

U sing the Java A P I’s Proxy to create a pro tection proxy

Geeky M atchm aking in O b jectv ille

The Person im plem entation

F ive-m inute dram a: pro tecting subjects

B ig Picture: creating a D ynam ic Proxy fo r the Person

T he Proxy Zoo

Tools fo r your Design Toolbox

The code fo r the A lbu m Cover V iew er

448

455

457

459

460

469

470

471

473

474

482

485

489

« in te r fa c e »
Subject

requestf)

« in t e r f a c e »
InvocationHandler

invoke!)

TV* *0УЈ to*s
dasses.

RealSubject I n v o c a t i o n H a n d le r

requests requestQ
invokeO

table of contents

compound patterns

Patterns of Patterns

Who would have ever guessed that Patterns could work
together? You’ve already witnessed the acrimonious Fireside Chats (and

you haven’t even seen the Pattern Death Match pages that the editor forced us to

remove from the book), so who would have thought patterns can actually get along

well together? Well, believe it or not, some of the most powerful OO designs use

several patterns together. Get ready to take your pattern skills to the next level; it’s

time for compound patterns.

Tbe bea t « se t a t I I і? Ъ?М and you
Id like to g re a s e * b 110.wou т

W orking together

D uck reunion

W hat d id we do?

A bin Ps duck’s-eye view: the class diagram

T he K in g o f C om pound Patterns

M eet M ode l-V iew -C on tro lle r

A closer lo o k ...

U nderstanding M V C as a set o f Patterns

U sing M V C to contro l the bea t...

B u ild ing the pieces

N ow le t’s have a look at the concrete BeatM odel class

T he V iew

Im p lem enting the V iew

N ow fo r the C on tro lle r

P u tting it a ll toge the r...

E xp lo ring Strategy

A dap ting the M ode l

A n d now fo r a test ru n ...

494

495

517

518

520

523

524

526

528

531

532

533

534

536

538

539

540

542

Tools fo r your Design Toolbox 545

eotMooi

setBPMO o ff()

„rtßpWO і

Controller

в О О Control

І P I C o n tro l

In te r SPM- й и к on tbe
mtnease beat
b u tto n ...

. wbieb results m tb e
C on tro lle r b e ir^ invoked

Tbe C ontro lle r asks

tb e model to upda*r
•fts B P M by one.

see tb e beatbar
pulse every 1/2- sećond-

View

в О О View

C urrent 3PM. 120
* « % і .

У
Tbe v ie * is updated
to IZ O ВРЛ1.

Because ih e BP/VI is 120,

viřw a beat n o tific a tio n every l/l second

V ie * is n o t if ied th a t tb e

BPMtbâed Л«®* .
o,etBPMO on th e »odel state-

better living With patterns

P atte rn s in th e Real World
Ahhhh, now you’re ready for a bright new world filled
With Design Patterns. But, before you go opening all those new doors

of opportunity, we need to cover a few details that you’ll encounter out in the

real world—that’s right, things get a little more complex than they are here

in Objectville. Come along, we’ve got a nice guide to help you through the

transition...

Design Pattern defined

Looking m ore closely at the Design Pattern de fin ition

M a y the force be w ith you

So you wanna be a Design Patterns w rite r

O rgan iz ing Design Patterns

T h in k in g in Patterns

Your M in d on Patterns

D o n ’t forget the power o f the shared vocabulary

C ru is in ’ O b jectv ille w ith the Gang o f Four

Your jo u rn e y has ju s t begun ...

T he Patterns Zoo

A n n ih ila tin g evil w ith Anti-Patterns

Tools fo r your Design Toolbox

Leaving O b jectv ille

іікра"**

mXOnceP bans

♦ 2Ns«***

2 m m a d *

565

567

568

573

575

580

583

585

587

588

590

592

594

595

table of contents

Appendix: Leftover P atterns

Not everyone can be the most popular. A lot has changed in the

last 25+ years. Since Design Patterns: Elements o f Reusable Object-Oriented

Software first came out, developers have applied these patterns thousands of

times. The patterns we summarize in this appendix are full-fledged, card-carrying,

official GoF patterns, but aren’t used as often as the patterns we’ve explored so

far. But these patterns are awesome in their own right, and if your situation calls for

them, you should apply them with your head held high. Our goal in this appendix is

to give you a high-level idea of what these patterns are all about.

Bridge 598

B u ilde r 600

C hain o f Responsibility 602

F lyw eight 604

In te rp re te r 606

M e d ia to r 608

M em ento 610

Prototype 612

V is ito r 614

Index

і

In g red ien tIn g red ien t

C lie n t /
T raverser

V is ito r

M en u ltem M en u ltem

Tbe Client asks
tbe Visitor to get
in-formation from tbe
Composite structure...
Kew methods can be
added to tbe Visitor
«without affecting tbe
Composite-

The Visitor needs to be able t о call
aetStateO across classes, and this is

where you can add new methods W

the client to use

The T raverser knows bow to

au.de tb e V is ito r th rough

th e Composite s tru c tu re

A ll these Composite
classes have to do is add

a getStateQ m ethod
(and n o t «worry about
exposing themselves).

