Contents

Foreword xiii

1

New Trends in the Design of Metal Nanoparticles and Derived Nanomaterials for Catalysis 1

Alain Roucoux and Karine Philippot

- 1.1 Nanocatalysis: Position, Interests, and Perspectives 1
- 1.2 Metal Nanoparticles: What Is New? 4
- 1.3 Conclusions and Perspectives 8 References 9

2	Introduction to Dynamic Catalysis and the Interface Between
	Molecular and Heterogeneous Catalysts 13

Alexey S. Galushko, Alexey S. Kashin, Dmitry B. Eremin, Mikhail V. Polynski, Evgeniy O. Pentsak, Victor M. Chernyshev, and Valentine P. Ananikov

2.1 Introduction 13

2.2 Dynamic Catalysis 14

- 2.3 Interface Between Molecular and Heterogeneous Catalysts 17
- 2.3.1 Direct Observation of Nanoparticle Evolution by Electron Microscopy 17
- 2.3.2 Through the Interface Detection of Molecular Species by Mass Spectrometry 19
- 2.3.3 Pervasiveness of Nanoparticles and the Problem of Catalytic Contamination 22
- 2.3.4 Computational Modeling of Dynamic Catalytic Systems 24
- 2.3.4.1 Equilibrium of Leaching and Recapture 24
- 2.3.4.2 Modeling Leaching, Recapture, and Transformations in Solution 25
- 2.3.5 Nanoparticle Catalysis in Solvent-Free and Solid-State Organic Reactions 27
- 2.3.6 Applications of the Mercury Test and Other Poisoning Techniques in the Nanoparticle Catalysis Studies 30
- 2.3.6.1 Catalyst Poisoning Techniques and Typical Poisons 30
- 2.3.6.2 Mercury Test 31

vi Contents

2.3.6.3	Fundamental Limitations of the Catalyst Poisoning Techniques for	
	Dynamic Systems 33	

Summary and Conclusions 34 2.4 References 36

> Part I Nanoparticles in Solution 43

3 Metal Nanoparticles in Water: A Relevant Toolbox for Green Catalysis 45

Audrey Denicourt-Nowicki, Natalia Mordvinova, and Alain Roucoux

- 3.1 Introduction 45
- 3.2 Protection by Ligands 46
- Hydrogenation Reactions 46 3.2.1
- 3.2.1.1 Phosphorous Ligands 46
- 3.2.1.2 Nitrogenated Ligands 47
- 3.2.1.3 Carbon Ligands 49
- 3.2.2 Suzuki-Miyaura Coupling Reactions 50
- Nitrogenated Ligands 50 3.2.2.1
- 3.2.2.2 Carbonaceous and Phosphorous Ligands 51

3.3 Stabilization by Surfactants 51

- 3.3.1 Hydrogenation Reactions 52
- 3.3.2 **Oxidation Reactions** 56
- 3.3.3 Other Reactions 57
- 3.4 Stabilization by Polymers 58
- 341 Hydrogenation Reactions 58
- Carbon-Carbon Coupling Reactions 3.4.2 64
- 3.4.3 Oxidation Reactions 66
- Conclusions and Perspectives 67 3.5 References 68

4 Organometallic Metal Nanoparticles for Catalysis 73

M. Rosa Axet and Karine Philippot

- 4.1 Introduction 73
- 4.2 Interests of the Organometallic Approach to Study Stabilizer Effect on Metal Surface Properties 74
- 4.3 Application of Organometallic Nanoparticles as Catalysts for Hydrogenation Reactions 78
- 4.3.1 Metal Nanoparticles Stabilized with Phosphorus Ligands 78
- 4.3.2 Metal Nanoparticles Stabilized with N-Heterocyclic Carbenes 80
- 4.3.3 Metal Nanoparticles Stabilized with Zwitterionic Ligands 82
- 4.3.4 Metal Nanoparticles Stabilized with Fullerenes 82
- 4.3.5 Metal Nanoparticles Stabilized with Carboxylic Acids 84
- 4.3.6 Metal Nanoparticles Stabilized with Miscellaneous Ligands 86
- 4.3.7 Bimetallic Nanoparticles 88

100

- 4.3.8 Supported Nanoparticles 90
- 4.4 Conclusions 94 References 95
- 5 Metal Nanoparticles in Polyols: Bottom-up and Top-down Syntheses and Catalytic Applications 99

Trung Dang-Bao, Isabelle Favier, and Montserrat Gómez

- 5.1 Introduction 99
 5.2 Bottom-up Approach: Colloidal Synthesis in Polyols
- 5.2 Bottom-up Approach: Colloidal Synthesis in Polyols
- 5.2.1 Ethylene Glycol and Poly(ethylene glycol) 100
- 5.2.2 Glycerol 105

6.1

- 5.2.3 Carbohydrates 108
- 5.3 Top-down Approach: Sputtering in Polyols 113
- 5.4 Summary and Conclusions 117
 - Acknowledgments 118

References 118

6 Catalytic Properties of Metal Nanoparticles Confined in Ionic Liquids 123

> Muhammad I. Qadir, Nathália M. Simon, and Jairton Dupont Introduction 123

- 6.2 Stabilization of Metal Nanoparticles in ILs 124
- 6.3 Synthesis of Soluble Metal Nanoparticles in ILs 125
- 6.4 Catalytic Application of NPs in ILs 126
- 6.4.1 Catalytic Hydrogenation of Aromatic Compounds 127
- 6.4.2 Coupling Reactions in ILs 130
- 6.4.3 Hydroformylation in ILs 132
- 6.4.4 Fischer–Tropsch Synthesis in ILs 133
- 6.4.5 Catalytic Carbon Dioxide Hydrogenation in ILs 133
- 6.5 Conclusions 134
 - Acknowledgments 135

References 135

Part II Supported Nanoparticles 139

7 Nanocellulose in Catalysis: A Renewable Support Toward Enhanced Nanocatalysis 141

Tony Jin and Audrey Moores

- 7.1 Introduction 141
- 7.2 Nanocellulose-Based Catalyst Design and Synthesis 143
- 7.2.1 Synthesis of Suspendable, CNC-Based Nanocatalysts 144
- 7.2.1.1 Unmodified CNCs as a Support for Metal NPs 144
- 7.2.1.2 Functionalized CNCs as a Support for Metal NPs 145
- 7.2.2 Nanocellulose-Based Solid Supports for Metal NPs 146
- 7.2.2.1 CNC-Embedded Supports 146

- 7.2.2.2 Functionalized CNFs as a Support for Metal NPs 147
- 7.2.2.3 Use of CNCs as a Source for Carbon Supports 147
- 7.3 Organic Transformations Catalyzed by Metal NP/nanocellulose Hybrids 148
- 7.3.1 C–C Coupling Reactions 148
- 7.3.2 Reduction Reactions 151
- 7.4 Conclusions 154
 - References 154
- 8 Magnetically Recoverable Nanoparticle Catalysts 159
 - Liane M. Rossi, Camila P. Ferraz, Jhonatan L. Fiorio, and Lucas L. R. Vono
- 8.1 Introduction 159
- 8.2 Magnetic Support Material 161
- 8.2.1 Magnetite Coated with Silica 163
- 8.2.2 Magnetite Coated with Ceria, Titania, and Other Oxides 165
- 8.2.3 Magnetite Coated with Carbon-Based Materials 166
- 8.3 Preparation of Magnetically Recoverable Metal Nanoparticle Catalysts 167
- 8.3.1 Immobilization of Metal Precursors Before Reduction 167
- 8.3.2 Decomposition of Organometallic Precursors 170
- 8.3.3 Immobilization of Colloidal Nanoparticles 172
- 8.3.4 Influence of Ligands on Catalytic Properties 173
- 8.4 Summary and Conclusions 176 References 176
- 9 Synthesis of MOF-Supported Nanoparticles and Their Interest in Catalysis 183

Guowu Zhan and Hua C. Zeng

- 9.1 Introduction 183
- 9.2 General Synthetic Methodologies 185
- 9.2.1 Catalytic Properties of Metal Nanoparticles 185
- 9.2.2 Synthetic Strategies of Metal Nanoparticles 187
- 9.2.2.1 Wet Chemical Reduction Method 187
- 9.2.2.2 Metal Vapor Condensation/Deposition Method 187
- 9.2.2.3 Electrochemical Method 188
- 9.2.2.4 Biosynthesis Method 188
- 9.2.3 Catalytic Activity and Catalytic Sites of MOFs 188
- 9.2.4 Porosity of MOFs for Catalysis Applications 189
- 9.2.5 Synthetic Strategies of MOFs 190
- 9.2.5.1 Electrochemical Method 191
- 9.2.5.2 Sonochemical Method 191
- 9.2.5.3 Microwave Irradiation Method 192
- 9.2.5.4 Mechanochemical Method 192
- 9.2.5.5 Synthesis of MOFs in Green Solvents 192
- 9.2.5.6 Microemulsion Method 193

- 9.2.5.7 Transformation from Solid Matters to MOFs 193
- 9.2.6 Integration Methods of MNPs with MOFs 194
- 9.2.6.1 Preformation of MNPs and Growth of MOFs 195
- 9.2.6.2 Incorporation of Metal Precursors Followed by in Situ Reduction 197
- 9.2.6.3 One-pot Integration of MOFs and MNPs 199
- 9.3 Architectural Designs and Catalytic Applications of MNP/MOF Nanocomposites 200
- 9.3.1 Zero-Dimensional MNP/MOF Nanocomposites 201
- 9.3.2 One-Dimensional MNP/MOF Nanocomposites 201
- 9.3.3 Two-Dimensional MNP/MOF Nanocomposites 203
- 9.3.4 Three-Dimensional MNP/MOF Nanocomposites 203
- 9.3.5 Other Representative Structures of MNP/MOF Composites 205
- 9.3.5.1 Core-Shell/Yolk-Shell Nanostructures 205
- 9.3.5.2 Sandwich-like Nanostructures 206
- 9.3.5.3 Formation of Nanoreactors with a Central Cavity 208
- 9.4 Summary and Conclusions 208 References 210

10 Silica-Supported Nanoparticles as Heterogeneous Catalysts 215

- 10.1 Introduction 215
- 10.2 Deposition Methods of Metal NPs 216
- 10.2.1 Wet Impregnation Method 216
- 10.2.2 Deposition–Precipitation Method 217
- 10.2.3 Colloidal Immobilization Method 218
- 10.2.4 Solid-State Grinding Method 219
- 10.2.5 Postsynthetic Grafting Method 220
- 10.3 Application of Silica-Supported NPs in Catalysis 221
- 10.3.1 Oxidation Reactions 221
- 10.3.1.1 CO Oxidation 221
- 10.3.1.2 Alcohol Oxidation 222
- 10.3.1.3 Hydrolysis of Silane 224
- 10.3.2 Hydrogenation Reactions 226
- 10.3.3 Carbon-Carbon (C-C) Coupling Reactions 230
- 10.4 Conclusion 234 References 235

Part III Application 239

11 CO₂ Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts: Opportunities and Challenges 241

Qiming Sun, Zhenhua Zhang, and Ning Yan

11.1 Introduction 241

Mahak Dhiman, Baljeet Singh, and Vivek Polshettiwar

x Contents

- 11.2 CO₂ Hydrogenation into Formic Acid 242
- 11.3 CO₂ Hydrogenation to Methanol 247
- 11.4 CO₂ Hydrogenation to Dimethyl Ether 250
- 11.5 Perspectives and Conclusion 252Acknowledgment 253References 253
- 12 Rebirth of Ruthenium-Based Nanomaterials for the Hydrogen Evolution Reaction 257

Nuria Romero, Jordi Creus, Jordi García-Antón, Roger Bofill, and Xavier Sala

- 12.1 Introduction 257
- 12.2 Relevant Figures of Merit 258
- 12.3 Factors Ruling the Performance of Ru-Based NPs in HER Electrocatalysis 261
- 12.3.1 Surface Composition 262
- 12.3.2 Phase Structure and Degree of Crystallinity 265
- 12.3.3 Influence of the C Matrix or the C-Based Support 266
- 12.3.4 Influence of Heteroatoms 270
- 12.3.4.1 Phosphorous 270
- 12.3.4.2 Metals and Semimetals 272
- 12.4 Factors Ruling the Performance of Ru-Based NPs in HER Photocatalysis 272
- 12.5 Summary and Conclusions 274 Acknowledgments 275 References 275

13 Nanocatalytic Architecture for the Selective Dehydrogenation of Formic Acid 279

Ismail B. Baguc, Gulsah S. Kanberoglu, Mehmet Yurderi, Ahmet Bulut, Metin Celebi, Murat Kaya, and Mehmet Zahmakiran

- 13.1 Introduction 279
- 13.2 Monometallic Palladium-Based Nanocatalysts 282
- 13.3 Bimetallic Palladium-Based Nanocatalysts 286
- 13.3.1 Bimetallic Pd-Containing Nanocatalysts in the Physical Mixture Form 286
- 13.3.2 Bimetallic Pd-Containing Nanocatalysts in the Alloy Structure 287
- 13.3.3 Bimetallic Pd-Containing Nanocatalysts in the Core@Shell Structure 291
- 13.3.4 Trimetallic Pd-Containing Nanocatalysts 294
- 13.3.5 Other Pd-Free Nanocatalysts 297
- 13.4 Summary and Conclusions 301 Acknowledgments 302 References 302

Part IV Activation and Theory 307

14	Magnetically Induced Nanocatalysis for Intermittent Energy
	Storage: Review of the Current Status and Prospects 309
	Julien Marbaix Nicolas Mille Julian Carrey Katerina Soulantica an

Julien Marbaix, Nicolas Mille, Julian Carrey, Katerina Soulantica, and Bruno Chaudret

14.1 Introduction 309

- 14.2 General Context and Historical Aspects 310
- 14.3 Characteristics of the Nanocatalysts Used in Magnetic Hyperthermia *312*
- 14.3.1 Metal Oxide Nanomaterials 312
- 14.3.2 Iron (0) Nanoparticles 312
- 14.3.3 Iron Carbide Fe(C) Nanomaterials 312
- 14.3.4 Bimetallic FeNi Nanoparticles 313
- 14.3.5 Bimetallic FeCo Nanoparticles 313
- 14.3.6 CoNi Nanoparticles 314
- 14.4 Catalytic Applications in Liquid Solution and Gas Phase 314
- 14.4.1 Gas-Phase Catalysis 314
- 14.4.1.1 Catalysis Activated by Magnetically Heated Micro- and Macroscaled Materials 314
- 14.4.1.2 Catalysis Activated by Magnetic Heating of Nanoparticles 316
- 14.4.2 Catalytic Reactions in Solution 318
- 14.5 Perspectives 322
- 14.5.1 Stability of the Catalytic Bed During Catalysis by Magnetic Heating 322
- 14.5.2 Thermal Management and Process Chemistry Using Magnetic Heating for Catalytic Applications 322
- 14.6 Perspective of the Integration for Renewable Energy Use 323
- 14.6.1 Interest of Power to Gas and Catalysis Using Magnetic Heating for Renewable Energy Use 323
- 14.6.2 Energy Efficiency and Environmental Considerations of Catalysis by Magnetic Heating 324
- 14.7 Conclusion 326 References 327
- 15 Sabatier Principle and Surface Properties of Small Ruthenium Nanoparticles and Clusters: Case Studies 331

Iker del Rosal and Romuald Poteau

- 15.1 Introduction 331
- 15.2 C-H Activation and H/D Isotopic Exchange in Amino Acids and Derivatives 333
- 15.2.1 Reference Activation and Dissociation Energies 333
- 15.2.2 H/D Exchange Mechanism 334
- 15.2.3 Bare Cluster 336
- 15.2.4 Ru₁₃D₁₉ 338
- 15.2.5 $\operatorname{Ru}_{13}D_n, n = 6-17$ 338

15.2.6	Short Discussion 338
15.3	Hydrogen Evolution Reaction 340
15.3.1	Introduction 340
15.3.2	4-Phenylpyridine-Protected RuNPs 341
15.3.3	Optimal Ligands for the HER? 344
15.4	Summary 346
15.5	Computational Details 347 Acknowledgments 348 References 348

Index 353