Contents

List of boxes

1. THE PATIENT'S BRAIN: SETTING THE STAGE FOR UNDERSTANDING PLACEBO EFFECTS

1.	A brief e	volutionary account of medical care	5				
	Summary points						
	1.1 Simp	ble organisms can take care of themselves	6				
	1.1.1	Unicellular organisms use simple strategies to protect themselves	6				
	1.1.2	The withdrawal reflex is present in both invertebrates and vertebrates	7				
	1.2 From	n the scratch reflex to grooming	8				
	1.2.1	The scratch reflex is a simple purposive behaviour	8				
	1.2.2	Grooming involves a complex behavioural repertoire	11				
	1.3 Scra	tching somebody else: a big evolutionary jump to social behaviour	13				
	1.3.1	Primates spend plenty of time in social grooming	13				
	1.3.2	From social grooming to altruistic behaviour	14				
	1.4 Taki	ng care of the sick	17				
	1.4.1	From early forms of altruism to the emergence of the shaman	17				
	1.4.2	More rational treatments emerge slowly from prehistoric to					
		historic medicine	20				
	1.5 Poin	ts for further discussion	21				
	-	and a second					
2.	-	ace and development of scientific medicine	24				
	Summar		24 25				
	2.1 Emerging knowledge and the problem of animal experimentation						
	2.1.1	Scientific medicine requires basic anatomical and physiological					
		knowledge	25				
		Acquiring new medical and surgical skills	27				
	2.1.3	Effective treatments need not be understood but they do					
		need validation	31				
	2.1.4	Animal research impacts negatively on most people and raises					
		many ethical concerns	34				
	2.2 Biolo	ogical, psychological, and social factors all contribute to illness					
	and	nealing	37				
	2.2.1	Modern scientific medicine includes a psychosocial component	37				
	2.2.2	Medical concepts vary across cultures but the psychosocial component					
		stays the same	40				

XXV

	2.3	Medical practice meets neuroscience	43
		2.3.1 Scientific medicine needs to include the study of the patient's and	
		doctor's brain	43
		2.3.2 To become and to be a patient involve four steps and relative	
		brain processes	43
	2.4	Points for further discussion	45
3.	Fee	ling sick: a combination of bottom-up and top-down events	49
	Sun	nmary points	49
	3.1	The patient feels sick through both bottom-up and top-down processes	50
		3.1.1 What is a symptom?	50
		3.1.2 Detection of a symptom is a combination of interoception and	
		other factors	51
		3.1.3 Different brain regions respond to interoceptive stimuli	53
		3.1.4 The insula plays a crucial role in awareness	55
		3.1.5 Interoceptive awareness undergoes a top-down modulation	57
	3.2	Bottom-up and top-down processes contribute to the global experience	
		of pain	58
		3.2.1 Pain experience is built up from the periphery to the central	
		nervous system	58
		3.2.2 There is not a single pain centre but a distributed system	61
		3.2.3 Pain experience changes across individuals and circumstances	64
		3.2.4 A complex neural network is responsible for the top-down modulation	
		of pain	66
	3.3	Emotions influence the perception of symptoms	68
		3.3.1 Feeling sick does not necessarily mean physical suffering	68
		3.3.2 Positive and negative emotions are processed in the limbic system	69
		3.3.3 Anxiety about pain activates brain circuits that increase the pain	70
		3.3.4 Anger and depression influence pain perception	75
	3.4	Points for further discussion	76
4.		king relief: the activation of motivational and reward circuits	88
		nmary points	88
	4.1	Suppressing discomfort and seeking pleasure	89
		4.1.1 Motivation is aimed at regulating internal states and at getting a reward	89
		4.1.2 Suppressing discomfort from hunger, thirst, and thermal variations	91
		4.1.3 Seeking the pleasure of sex	92
		4.1.4 Reward-seeking behaviours involve the mesolimbic dopaminergic system	94
	4.2	Suppressing discomfort from sickness	97
		4.2.1 Seeking relief from sickness is a motivated behaviour	97
		4.2.2 Motivated behaviour varies according to cultural differences	98
		4.2.3 The motivation/reward system is activated when seeking and	
		expecting relief	99
	4.3	Points for further discussion	102

5.		eeting the therapist: a look into trust, hope, empathy, and compassion echanisms	106
		mmary points	106
		Trusting the therapist	100
	5.1	5.1.1 Trust in doctors can be measured	107
		5.1.2 The amygdala is a key region in trustworthiness decisions	107
		5.1.2 Oxytocin enhances trust	109
		5.1.4 Admiration for virtue and for skills involves two separate neural systems	114
	52	Sensory inputs can make the difference	117
	5.4	5.2.1 Subtle differences in verbal communication may lead to different	110
		outcomes	118
		5.2.2 Visual stimuli are the basis for nonverbal communication	119
		5.2.3 Being touched by a beloved one makes the pain more bearable	125
	53	The patient wants the future to be better than the present	125
	0.0	5.3.1 Hope and hopelessness may impact on health	127
		5.3.2 Hopelessness/helplessness involve serotonergic and noradrenergic	127
		systems	130
	5.4	A look into the doctor's brain	131
	0.1	5.4.1 Face expressions of pain are likely to have evolved for eliciting	101
		medical attention from others	131
		5.4.2 Empathy and compassion have different meanings and mechanisms	132
		5.4.3 There are two different neural systems for empathy	133
		5.4.4 Compassion for social and physical pain engages two separate	100
		neural systems	136
		5.4.5 Doctors can regulate their emotional responses to others' suffering	137
	5.5	The doctor-patient interaction may have both positive and negative effects	139
		5.5.1 A positive interaction may lead to positive outcomes	139
		5.5.2 A negative interaction may lead to negative outcomes	142
	5.6	Pain can be made a positive experience	143
		Points for further discussion	144
6.	The	e brain of the demented patient	155
		nmary points	155
		Many patients cannot communicate their discomfort	155
		6.1.1 Who cannot communicate?	155
		6.1.2 Dementia is a major medical problem	156
	6.2	How the demented patient feels sick	158
		6.2.1 The lateral and medial pain systems are affected differently in	
		Alzheimer's disease	158
		6.2.2 Vascular dementia may be associated to hyperalgesia	165
		6.2.3 Frontotemporal dementia leads to reduced pain responses	166
	6.3	The demented patient cannot seek relief	167
		6.3.1 Purposive behaviour is impaired in dementia	167
	6.4	The demented patient meets the therapist	168
		6.4.1 There is no real interaction between the demented patient and the doctor	168
	6.5	Points for further discussion	169

2. PLACEBO EFFECTS: GENERAL CONCEPTS AND MECHANISMS

7.	The	e trad	itional concept of placebo	175
	Sur	nmar	y points	175
	7.1	The	origin of the placebo concept and methodology	175
		7.1.1	Many bizarre ineffective therapies were developed over the past centuries	175
		7.1.2	When doctors became aware of the ineffectiveness of many therapies	178
		7.1.3	The traditional concept of placebo effect is a first source of confusion	179
	7.2	The	placebo in clinical trials and medical practice	181
		7.2.1	Placebos are the tenet of the randomized double-blind	
			placebo-controlled trial design	181
		7.2.2	Placebos may be used with other experimental designs	182
		7.2.3	Placebos are widely used in routine medical practice	186
		7.2.4	Psychologists consider the placebo effect as an example of the	
			power of mind	187
	7.3	Point	ts for further discussion	189
8.	An	noder	n view of placebo and placebo-related effects	193
			y points	193
	8.1	Wha	t they are not	194
		8.1.1	Many phenomena are mistakenly taken for placebo effects	194
		8.1.2	Spontaneous remission is frequently and erroneously defined	
			as placebo effect	194
		8.1.3	Regression to the mean is common in clinical trials	197
		8.1.4	Signal detection ambiguity can sometimes explain symptom 'reduction'	197
		8.1.5	Sometimes patients and doctors give biased reports of the	
			clinical condition	199
		8.1.6	Co-interventions can sometimes be the cause of improvement	199
		8.1.7	Classical clinical trials are not good for understanding placebo effects	200
	8.2		t they are	203
		8.2.1	Is the placebo effect different from the placebo response?	203
		8.2.2	The psychosocial context around the therapy is the crucial factor	204
		8.2.3	Placebo and nocebo effects occur when inert treatments are given	209
		8.2.4	Placebo- and nocebo-related effects do not involve the administration	
			of inert treatments	210
		8.2.5	Are subjective outcomes different from objective outcomes?	211
	8.3		they work	212
		8.3.1	There is not a single placebo effect but many	212
			Expectation of a future outcome is one of the principal mechanisms	213
			The placebo effect is a learning phenomenon	216
			Some personality traits may be associated with placebo responsiveness	221
			Genetics may affect placebo responding	222
			Other possible explanations have been proposed	224
			Placebo effects are also present in animals	225
			What is the difference between placebo responders and non-responders?	226

	8.4	Why they occur	227
		8.4.1 Expectation-mediated placebo effects may be related to other	
		self-regulatory processes	227
		8.4.2 Are placebo and placebo-related effects a product of evolution?	229
		8.4.3 Open-label placebos: why are they effective?	231
		8.4.4 Do placebo effects occur on pre-existing nocebo effects?	232
	8.5	Points for further discussion	232
9	Pla	cing placebo effects within the context of the doctor-patient	
		ationship as a defence mechanism	244
		nmary points	244
		A variety of defence mechanisms are present in living organisms	245
		9.1.1 Cells respond to invaders and to damage	245
		9.1.2 Living organisms protect themselves from a variety of dangers	247
	9.2	Defence mechanisms can also involve cultural and social aspects	248
		9.2.1 Thermoregulation as an example of physiological and	
		cultural mechanism	248
		9.2.2 Social groups can be advantageous to health in a number of ways	249
	9.3	The doctor-patient interaction is a social mechanism of defence	250
	2.0	9.3.1 The system works regardless of effective therapies	250
		9.3.2 Why does the system work this way?	252
		9.3.3 The doctor himself belongs to the system	252
	94	Points for further discussion	253
			201

3. DISEASE-BASED CLASSIFICATION OF PLACEBO EFFECTS: MOST STUDIED CONDITIONS

10.	Pain		259
	Summary po	pints	259
	10.1 Placebo	o analgesia	259
	10.1.1	Placebo analgesia is the most studied type of placebo effect	259
	10.1.2	Many factors influence the magnitude of placebo analgesia	260
	10.1.3	Expectations of improvement may lead to analgesia	265
	10.1.4	Painkillers are much less effective when administered covertly	267
	10.1.5	Placebo analgesia is today the best model for studying endogenous mechanisms of analgesia	269
	10.1.6	Some types of placebo analgesia are mediated by endogenous opioids	270
	10.1.7	Some types of placebo analgesia involve the endocannabinoid system	275
	10.1.8	Placebo analgesia is related to a reward dopaminergic system	277
	10.1.9	Imaging the brain during placebo-induced expectations of analgesia	277
	10.1.10	No prefrontal control, no placebo response	281
	10.2 Nocebo	o hyperalgesia	282
	10.2.1	Expectations of worsening may lead to hyperalgesia	282
	10.2.2	Learning nocebo effects through observation	285
	10.2.3	Negative expectations spread across different individuals	285
	10.2.4	Nocebo hyperalgesia is mediated by cholecystokinin	288
	10.2.5	Imaging the brain when expecting hyperalgesia	290
	10.2.6	Positive mood can reduce nocebo effects	292
	10.3 Points	for further discussion	293

XX CONTENTS

11.	Dise	eases of	f the nervous system	303
	Sum	maryp	points	303
			nson's disease	303
		11.1.1	Parkinson patients who receive placebo show a high rate	
			of improvement	303
		11.1.2	Expectations modulate Parkinsonian symptoms	304
			Dopamine depletion in the striatum is the cause of Parkinson's disease	307
			Placebo administration induces dopamine release in the striatum	309
			The subthalamic nucleus neurons of Parkinson patients show	
			abnormal activity	311
		11.1.6	Placebos restore the normal activity of subthalamic nucleus neurons	312
			Expectations of benefit can be as powerful as half dose of L-dopa	315
	11.2		brain stimulation and emotional processing	315
		-	Expectations enhance the excitability of some limbic regions	315
			Expecting an emotion may change its intensity	317
	11.3		ine and headache	320
		-	Subcutaneous placebos are better than oral placebos	320
			Substantial clinical improvements occur in placebo groups in	
			clinical trials of anti-migraine agents	321
	11.4	Fatigu		323
		-	Fatigue is very sensitive to placebo treatments	323
	11.5	Sleep		324
		-	Placebos for insomnia may induce behavioural and	
			physiological changes	324
		11.5.2	Restless legs syndrome shows improvements in placebo groups	325
	11.6		logical disorders with a few or no available data	325
			for further discussion	326
12	Men	talanc	l behavioural disorders	333
12.		mary p		333
		Depre		333
	12.1	-	The rate of improvement in placebo groups is high and has	555
		14.1.1	increased over the past years	333
		1212	Placebos and antidepressants affect similar areas of the brain	336
			Some genetic polymorphisms are involved in the antidepressant	550
		12.1.5	placebo response	339
	122	Anxie	• •	340
	12.2		Anti-anxiety drugs are much less effective when given covertly	340
			Imaging anxiety reduction after placebo administration	340
	123	Deme		343
	12.5		Intensive follow-up can improve cognition in demented patients	343
			Loss of prefrontal executive control affects placebo responsiveness	344
	121	Addic		346
	12.4		Expecting a drug of abuse makes it more pleasurable	346
			There is no definitive role of placebo and placebo-like effects in	540
		12.4.2	alcohol abuse	348
		1242		350
			Tobacco smoking and nicotine intake show large placebo effects Placebos can mimic and replace caffeine	350
			Placebo response rates from cessation trials may inform on	551
		14.1.5	strength of addictions	352
				554

	12.5	Psychotherapy	352
		12.5.1 Does psychotherapy work through a benign human relationship?	352
		12.5.2 It is difficult to disentangle placebo effects from psychotherapy	353
		12.5.3 The neural mechanisms of some psychotherapies differ from	
		those of the placebo effect	355
		12.5.4 Methodological recommendations for randomized controlled	
		trials of psychological interventions have been proposed	355
	12.6	Premenstrual dysphoric disorder	356
		12.6.1 Placebos may reduce symptomatology through endogenous opioids	356
	12.7	Attention-deficit hyperactivity disorder	357
	10.0	12.7.1 Reducing drug intake through conditioned placebo responses	357
		Mental disorders with no available data	357
	12.9	Points for further discussion	357
3.	Imm	une and endocrine systems	366
	Sum	mary points	366
		Immunity and hormone secretion are subject to psychosocial	
		influences	366
	13.2	The immune system	367
		13.2.1 Immune responses can be conditioned	367
		13.2.2 Can conditioning of immune placebo responses affect the course of	
		autoimmune diseases and allergies?	371
		13.2.3 Specific and discrete neural networks are responsible for immune	
		placebo effects	373
		13.2.4 Several neurotransmitters are implicated in conditioned immune	
		placebo effects	375
		13.2.5 Inducing nocebo allergic reactions and adverse events	376
	13.3	The endocrine system	377
		13.3.1 Insulin conditioning can induce both hypoglycaemic and	
		hyperglycaemic placebo responses	377
		13.3.2 Inducing placebo insulin secretion	379
		13.3.3 Hypothalamic-pituitary-adrenal activity can be conditioned	380
		13.3.4 Conditioning but not expectation induces growth hormone	
		and cortisol placebo responses	381
	13.4	Points for further discussion	384
		4. DISEASE-BASED CLASSIFICATION OF PLACEBO	
		EFFECTS: LESS STUDIED CONDITIONS	
		EFFECTS: LESS STUDIED CONDITIONS	
4.		liovascular and respiratory system	393
		mary points	393
	14.1	The cardiovascular system	393
		14.1.1 There are a few and contrasting placebo studies in	
		cardiovascular health	393
		14.1.2 Some cardiac effects can be conditioned	395
		14.1.3 Placebo-induced activation of endogenous opioids may affect	0.01
		heart activity	396
		14.1.4 Side effects are common in placebo groups of cardiovascular clinical trials	200
		cimical triais	399

1

xxii CONTENTS

	14.2	The re	espiratory system	400		
		14.2.1	Placebos can mimic the depressant effects of narcotics on ventilation	400		
			Placebos reduce bronchial hyper-reactivity in asthma	402		
			Cough is powerfully reduced by placebo treatments	405		
	14.3		s for further discussion	406		
15.			stinal and genitourinary disorders	411		
		mary p		411		
	15.1		pintestinal disorders	411		
		15.1.1	Reduction in gastrointestinal symptoms is common in patients			
			who receive placebo treatments	411		
		15.1.2	Increasing the frequency of placebo administration increases clinical			
			improvement	413		
		15.1.3	The placebo responses in irritable bowel syndrome can be imaged			
			in the brain	415		
			Salivary secretion can be conditioned	417		
			Gastrointestinal symptoms can be learned	417		
		15.1.6	Placebo- and nocebo-induced expectations may lead to clinical			
			improvement and worsening respectively	418		
	15.2		ourinary disorders	420		
		15.2.1	Reductions of subjective lower urinary tract symptoms are larger			
			than reductions of objective symptoms in placebo groups	420		
			Sexual function may improve after placebo and worsen after nocebo	421		
	15.3	Points	for further discussion	423		
16.	Spec	ial me	dical conditions and therapeutic interventions	427		
	Summary points					
		Oncol		427		
			Placebos may induce symptom reduction but not cancer regression	427		
		16.1.2	Cancer chemotherapy induces conditioned nocebo responses	428		
	16.2	Surger		431		
		16.2.1	Patients undergoing placebo surgery show a high rate			
			of improvement	431		
		16.2.2	Improvement may occur in those who believe they have received			
			transplantation	432		
	16.3	Physic	cal therapies	434		
			It is difficult to devise placebo physical therapies	434		
	16.4		lementary and alternative therapies	435		
		-	Do complementary and alternative therapies work through			
			placebo effects?	435		
		16.4.2	Acupuncture is likely to work through both specific and			
			placebo effects	436		
		16.4.3	Expectations in acupuncture clinical trials can make a			
			big difference	437		
	16.5	Itch		438		
			Substantial placebo and nocebo effects are present in itch	438		
	16.6		conditions with no available data	438		
			for further discussion	440		

5. CLINICAL, ETHICAL, AND METHODOLOGICAL CONSIDERATIONS

17.	Clinical–ethical implications and applications 4					
	Sum	mary p	ooints	447		
	17.1	Assess	sing the effectiveness of new therapies	447		
		17.1.1	The debate of using placebos in clinical trials is still open	447		
		17.1.2	Two examples of the ethics of placebo trials: surgery			
			and schizophrenia	456		
		17.1.3	New designs can be envisaged that increase the sensitivity of the trial	458		
		17.1.4	The new insights into placebo mechanisms lead to an			
			uncertainty principle	460		
	17.2	Harne	essing placebo and placebo-related effects in the clinic	465		
			Drug-like effects can be obtained without drugs	465		
		17.2.2	When doctors should treat their patients with placebos	468		
		17.2.3	Patients with prefrontal impairment need larger doses of analgesics	469		
			There is a danger behind the corner: does the science of placebo boost			
			pseudoscience?	470		
	17.3	Points	for further discussion	472		
18.	How	to run	n a placebo study: a closer look into complex	478		
	experimental designs					
	Sum	mary p	points	478		
	18.1	What	are we looking for?	478		
	18.2	Many	arms are better than two	480		
		18.2.1	The 12-arms experiment with placebo, naloxone, and proglumide	480		
		18.2.2	The 12-arms experiment with placebo, naloxone, morphine,			
			and ketorolac	482		
		18.2.3	The 6-arms experiment on the somatotopic effects of placebo			
			and naloxone	484		
		18.2.4	The 4-arms experiment with nocebo, diazepam, and proglumide	485		
	18.3	Invest	igating sequence effects and learning	487		
			The design of expectation versus conditioning effects	487		
		18.3.2	The conditioning procedure for intraoperative recording	490		
			The experiment on learning	491		
	18.4	-	paring expected versus unexpected therapies	493		
			How to compare an open with a hidden treatment	493		
			The open-hidden paradigm in Alzheimer patients	494		
			The experiment with deep brain stimulation	495		
	18.5	Points	s for further discussion	495		
			6. BEYOND THE HEALING CONTEXT			
19.	Phys	sical an	nd cognitive performance	499		
	Summary points					
			cal performance	499		
			Placebos boost physical performance	499		
			Should opioid-mediated placebo responses be considered doping?	504		
			Nocebos can counteract good physical performance	504		

XXIV CONTENTS

	19.2	Performance at high altitude	505
		19.2.1 High altitude is a model for both performance and hypoxia	505
		19.2.2 Placebos work at very high altitudes under severe hypoxic conditions	508
		19.2.3 Nocebo effects explain the interaction between biological	
		and psychosocial factors	511
	19.3	Cognitive performance	512
		19.3.1 Placebos boost performance within the cognitive domain	512
	19.4	Points for further discussion	514
20.	Ever	yday life	519
		mary points	519
		Halo effects are similar to placebo effects	519
		Expectations modulate hunger and satiety	520
		Points for further discussion	521

Index

523