Contents | PREFACE page xii | i | |--|---| | | | | 1 EARLY ATOMIC THEORY | 1 | | 1.1 Gas Properties | 2 | | Air pressure □ Boyle's law □ Temperature Scales □ Charles' law □ Explanation of gas laws □ Ideal gas law | | | 1.2 Chemistry | 6 | | Elements Law of combining weights Dalton's atomic weights Law of combining volumes Avogadro's principle The gas constant Avogadro's number | | | 1.3 Electrolysis |) | | Early electricity Early magnetism Electromagnetism Discovery of electrolysis Faraday's theory The faraday | | | 1.4 The Electron | 1 | | Cathode rays Thomson's experiments Electrons as atomic constituents | | | 2 THERMODYNAMICS AND KINETIC THEORY 16 | 5 | | 2.1 Heat and Energy | 5 | | Caloric □ Heat as energy □ Kinetic energy □ Specific heat □ Energy density and pressure □ Adiabatic changes | | | 2.2 Absolute Temperature 21 | |---| | Carnot cycles ☐ Theorems on efficiency ☐ Absolute temperature defined ☐ Relation to gas thermometers | | 2.3 Entropy 27 | | Definition of entropy □ Independence of path □ Increase of entropy □ Thermodynamic relations □ Entropy of ideal gases □ Neutral matter □ Radiation energy □ Laws of thermodynamics | | 2.4 Kinetic Theory and Statistical Mechanics 33 | | Maxwell–Boltzmann distribution \square General H -theorem \square Time reversal \square Canonical and grand-canonical distributions \square Connection with thermodynamics \square Compound systems \square Probability distribution in gases \square Equipartition of energy \square Entropy as disorder | | 2.5 Transport Phenomena 42 | | Conservation laws ☐ Galilean relativity ☐ Navier—Stokes equation ☐ Viscosity ☐ Mean free path ☐ Diffusion | | 2.6 The Atomic Scale 53 | | Nineteenth century estimates ☐ Electronic charge ☐ Brownian motion ☐ Consistency of constants ☐ Appendix: Einstein's diffusion constant rederived | | 3 EARLY QUANTUM THEORY 61 | | 3.1 Black Body Radiation 61 | | Absorption and energy density □ Degrees of freedom of electromagnetic fields □ Rayleigh–Jeans distribution □ Planck distribution □ Measurement of Boltzmann constant □ Radiation energy constant | | 3.2 Photons 67 | | Quantization of radiation energy □ Derivation of Planck distribution □ Photoelectric effect □ Particles of light | | 3.3 The Nuclear Atom 71 | | Radioactivity □ Alpha and beta rays □ Discovery of the nucleus □ Nuclear mass □ Nuclear size □ Scattering pattern □ Nuclear charge | | 3.4 Atomic Energy Levels 77 | | Spectral lines □ Electron orbits □ Combination principle □ Bohr's quantization condition □ Correspondence principle □ Comparison with observed one-electron atomic spectra □ Reduced mass □ Atomic number □ Outstanding questions | Contents ix | 3.5 Emission and Absorption of Radiation | |---| | Einstein A and B coefficients \square Equilibrium with black body radiation \square Relations among coefficients \square Lasers \square Suppressed absorption | | 4 RELATIVITY 88 | | 4.1 Early Relativity Motion of the Earth □ Relativity of motion □ Speed of light □ Michelson–Morley experiment □ Lorentz–Fitzgerald contraction | | 4.2 Einsteinian Relativity Postulate of invariance of electrodynamics □ Lorentz transformations □ Space inversion, time reversal □ The Galilean limit □ Maximum speed □ Boosts in general directions □ Special and general relativity | | 4.3 Clocks, Rulers, Light Waves Clocks and time dilation □ Rulers and length contraction □ Transformation of frequency and wave number | | 4.4 Mass, Energy, Momentum, Force 106 Einstein's thought experiment \Box Formulas for energy and momentum \Box $E = mc^2$ \Box Force in relativistic dynamics | | 4.5 Photons as Particles Photon momentum □ Compton scattering □ Other massless particles | | 4.6 Maxwell's Equations ☐ Density and current of electric charge ☐ Relativistic formulation of inhomogeneous Maxwell equations ☐ Indices upstairs and downstairs ☐ Relativistic formulation of homogeneous Maxwell equations ☐ Electric and magnetic forces | | 4.7 Causality Causes precede effects □ Invariance of temporal order □ Maximum signal speed □ Light cone | | 5 QUANTUM MECHANICS 124 | | 5.1 De Broglie Waves Free-particle wave functions □ Group velocity □ Application to hydrogen □ Davisson-Germer experiment □ Electron microscopes □ Appendix: Derivation of the Bragg formula | | 5.2 The Schrödinger Equation 129 | |---| | Wave equation for particle in potential □ Boundary conditions □ Spherical symmetry □ Radial and angular wave functions □ Angular multiplicity □ Spherical harmonics □ Hydrogenic energy levels □ Degeneracy | | 5.3 General Principles of Quantum Mechanics 138 | | States and wave functions ☐ Observables and operators ☐ Hamiltonian ☐ Adjoints ☐ Expectation values ☐ Probabilities ☐ Continuum limit ☐ Momentum space ☐ Commutation relations ☐ Uncertainty principle ☐ Time dependent wave functions ☐ Conservation laws ☐ Heisenberg and Schrödinger pictures | | 5.4 Spin and Orbital Angular Momentum 151 | | Doubling of sodium D-line ☐ The idea of spin ☐ General action of rotations on wave functions ☐ Total angular momentum operator ☐ Commutation relations ☐ Spin and orbital angular momentum ☐ Multiplets ☐ Adding angular momenta ☐ Atomic fine structure and space inversion ☐ Hyperfine structure ☐ Appendix: Clebsch–Gordan Coefficients | | 5.5 Bosons and Fermions 165 | | Identical particles □ Symmetric and antisymmetric wave functions □ Bosons and fermions in statistical mechanics □ Hartree approximation □ Slater determinant □ Pauli exclusion principle □ Periodic table of elements □ Diatomic molecules: para and ortho □ Astrophysical cooling | | 5.6 Scattering | | Scattering wave function \square Representations of the delta function \square Calculation of the Green's function \square Scattering amplitude \square Probabilistic interpretation \square Cross section \square Born approximation \square Scattering by shielded Coulomb potential \square Appendix: General transition rates | | 5.7 Canonical Formalism 190 | | Hamiltonian formalism ☐ Canonical commutation relations ☐ Lagrangian formalism ☐ Action principle ☐ Connection of formalisms ☐ Noether's theorem: symmetries and conservation laws ☐ Space translation and momentum | | 5.8 Charged Particles in Electromagnetic Fields 195 | | Vector and scalar potential □ Charged particle Hamiltonian □ Equations of motion □ Gauge transformations □ Magnetic interactions □ Spin coupling | | 5.9 Perturbation Theory 199 | | Perturbative expansion First-order perturbation theory Dealing with | | 5.10 Beyond Wave Mechanics | 206 | |---|-------| | State vectors □ Linear operators □ First postulate: values of observables □ Second postulate: expectation values □ Probabilities □ Continuum limit □ Wave functions as vector components | | | 6 NUCLEAR PHYSICS | 210 | | 6.1 Protons and Neutrons | 210 | | Discovery of the proton □ Integer atomic weights □ Nuclei as protons and electrons? □ Trouble with diatomic nitrogen □ Discovery of the neutron □ Nuclear radius and binding energy □ Liquid drop model □ Stable valley ar decay modes | | | 6.2 Isotopic Spin Symmetry | 216 | | Neutron–proton and proton–proton forces ☐ Isotopic spin rotations ☐ Isotopic multiplets ☐ Quark model ☐ Pions ☐ Appendix: The three–three resonance | spin | | 6.3 Shell Structure | 224 | | Harmonic oscillator approximation □ Raising and lowering operators □ Degenerate multiplets □ Magic numbers □ Spin-orbit coupling | | | 6.4 Alpha Decay | 229 | | Coulomb barrier Barrier suppression factors Semi-classical estimate of algeray rate Level splitting Geiger-Nuttall law Radium alpha decay Appendix: Quantum theory of barrier penetration rates | pha | | 6.5 Beta Decay | 243 | | Electron energy distribution Neutrinos proposed Fermi theory Gamow–Teller modification Selection rules Strength of weak interacti Neutrinos discovered Violation of left–right and matter–antimatter symme Neutrino helicities Varieties of neutrino | tries | | 7 QUANTUM FIELD THEORY | 251 | | 7.1 Canonical Formalism for Fields | 252 | | Action, Lagrangian, Lagrangian density ☐ Functional derivatives ☐ Euler—Lagrange field equations ☐ Commutation relations ☐ Energy and momentum of fields | | | 7.2 Free Real Scalar Field | 255 | | Lagrangian density Field equation Creation and annihilation operators | | | ☐ Energy and momentum ☐ Vacuum state ☐ Multiparticle states | | | 7.3 Interactions Manual | 261 | |--|-------| | Time-ordered perturbation theory □ Requirements for Lorentz invariance □ Example: Scattering of neutral spinless particles □ Feynman diagram □ Calculation of the propagator □ Yukawa potential | | | 7.4 Antiparticles, Spin, Statistics | 270 | | Antiparticles needed Complex scalar field General fields Lorentz | | | transformation Spin-statistics connection Appendix: Dirac fields | | | 7.5 Quantum Theory of Electromagnetism | 280 | | Lagrangian density for electrodynamics ☐ Four-vector potential ☐ Gauge transformations ☐ Coulomb gauge ☐ Commutation relations ☐ Free fields ☐ Photon momentum and helicity ☐ Radiative decay rates ☐ Selection rules | | | ☐ Gauge invariance and charge conservation ☐ Local phase invariance ☐ Star model | ndard | | ASSORTED PROBLEMS | 296 | | BIBLIOGRAPHY | 301 | | AUTHOR INDEX | 303 | | SUBJECT INDEX | 207 |