Contents | | Preface | ix | |-------------------------------------|---|--| | | Acknowledgments | xiii | | 1 | Foraging Economics: The Logic of Formal Modeling | 3 | | 2-Σ s | 1.1 Introduction 1.2 The Elements of Foraging Models 1.3 Decision Assumptions 1.4 Currency Assumptions 1.5 Constraint Assumptions 1.6 Lost Opportunity 1.7 Summary | 3
5
6
7
9
11 | | 2 | Average-Rate Maximizing: The Prey and Patch Models | 13 | | | 2.1 Some General Comments 2.2 The Prey Model: Search or Eat? 2.3 The Patch Model: How Long to Stay? 2.4 Combining the Prey and Patch Models 2.5 Limitations 2.6 More Decisions for the Average-Rate Maximizer 2.7 Summary | 13
17
24
32
34
35
36 | | 3 | Average-Rate Maximizing Again: Changed Constraints | 38 | | umb
b
sace
Schee
raus C | 3.1 Introduction 3.2 Sequential versus Simultaneous Encounter 3.3 Exclusivity of Search and Handling 3.4 Prey Choice with Sequential Dependence 3.5 Travel Restrictions and Central-Place Foraging 3.6 Nutrients and Toxins as Constraints 3.7 Recognition Constraints 3.8 Conclusion 3.9 Summary | 38
38
45
48
53
61
64
72 | | 4 | Incomplete Information | 75 | | | 4.1 Introduction4.2 The Value of Recognition4.3 Tracking a Changing Environment4.4 Patch Sampling | 75
76
81
90 | | | 4.5 How Are These Problems Related?4.6 Summary | 99
102 | |---|---|--| | 5 | The Economics of Choice: Trade-offs and Herbivory | 104 | | | 5.1 Introduction 5.2 Economics of Consumer Choice 5.3 Economic Choice and Animal Psychology 5.4 Studies of Trade-offs: Birds are Tame in Winter 5.5 Nutrients and Diet Choice by Herbivores 5.6 Summary | 104
104
110
114
116
126 | | 6 | Risk-Sensitive Foraging | 128 | | | 6.1 Introduction 6.2 Risk and Utility 6.3 Risk-Sensitive Feeding Behavior 6.4 Shortfall Models of Risk Taking: The Z-Score Model | 128
128
134 | | | 6.5 A Descriptive Model of Risk Taking6.6 Impulsiveness, Hunger, and Time Discounting6.7 Summary | 144
147
150 | | 7 | Dynamic Optimization: The Logic of Multi-Stage Decision Making | 151 | | | 7.1 Introduction 7.2 Solving for Decision Functions: The PMP 7.3 Trade-offs and Dynamic Optimization 7.4 Conclusions 7.5 Summary | 151
156
161
168
169 | | 8 | More on Constraints: Rules of Thumb and Satisficing | 170 | | | 8.1 Introduction 8.2 Behavioral Constraints: Rules of Thumb 8.3 The Performance of Rules of Thumb 8.4 Rules of Thumb: Experimental Evidence 8.5 Rules for Switching on Concurrent Schedules 8.6 Satisficing and Constraints 8.7 Concluding Remarks: Constraint versus Design 8.8 Summary | 170
172
172
176
176
180
181
182 | | 9 | Testing Foraging Models | 183 | | | 9.1 Foraging Models and Data 9.2 Testing Foraging Models 9.3 How Well Does Foraging Theory Do? 9.4 Pitfalls in Testing Foraging Models 9.5 Sufficient Tests? 9.6 Summary | 183
185
195
199
202
205 | | • • • • | | | |---------|---|---------------------------------| | 10 | Optimization Models in Behavioral Ecology:
The Spandrel Meets Its Arch-Rival | 206 | | | 10.1 Introduction 10.2 What Is Wrong with Optimization Models? 10.3 Optimization and Newton's Second Coming 10.4 Alternatives to Optimization? 10.5 Summary | 206
207
212
214
214 | | | References and Index of Citations | 217 | | | Subject Index | 239 | | | chinery. An engineer might ask, among other ques |