Jaroslav Menčík: Applied mechanics of thin-walled structures

Contents

Foreword	7
1. Introduction – repetition of twist and bending	9
1.1 Torsion	9
1.2 Bending	18
2. Constrained torsion	30
3. Plates, membranes and shells	35
3.1 Thin plates	35
3.2 Orthotropic plates	38
3.3 Sandwich elements	39
3.4 Membranes and thin-walled shells	42
3.5 Membrane state of stress, Laplace equation	43
3.6 Thin-walled cylindrical pressure vessel	44
3.7 Thin-walled rotationally symmetrical vessels	47
3.8 Thin-walled spherical pressure vessel	48
3.9 Membrane and bending stresses in rotational shells	48
3.10 Axisymmetrical bending state of stress in a cylindrical shell	50
4. Buckling (loss of stability)	
of slender and thin-walled parts	59
4.1. Slender rods loaded by axial compressive force	60
4.2. Stability of narrow high beams loaded by transverse force	66
4.3 Buckling due to shear stresses	69
4.4 Loss of stability of plates	69
4.5 Buckling of cylindrical shells	75
4.6 Use of stiffening ribs	80
4.7 Critical external pressure on spherical shell	81
4.8 Postcritical behaviour of bars, plates and shells	82

Jaroslav Menčík: Applied mechanics of thin-walled structures

4.9	Solution of stability problems by the finite element method	83
5.	Thermal stresses in thin-walled elements	87
5.1	Long rod at temperature change	87
5.2	Long rod with a temperature gradient across the thickness	88
5.3	Circular plate at temperature change	89
5.4	Rectangular plate with temperature gradient across the thickness	91
5.5	Thin circular plate with warmer central area	92
5.6	Thin-walled cylindrical tube exposed to temperature change	94
6.	Design of thin-walled structures	98
6.1	Design solutions	98
6.2	Use of similarity and dimensionless quantities in design	105
6.3	Probabilistic aspects of structural design	107
6.4	Influence of dimensions	111
6.5	Computer support to design	113
Inc	lex	120