Contents | Preface to the First Edition (1998) Preface to the Second Edition (2014) Foreword to the First Edition (1998) Reviews to the First Edition (1998) Foreword to the Second Edition (2013) Preface to the Third Edition Acknowledgements Credits | ix xi xiii xv xix xxi xxiii xxv | 3.6 Relative Humidity 3.7 Dew Point: The Temperature of Condensation 3.8 Frost Point: The Temperature of Freezing 3.9 Wet Bulb Temperature: The Temperature of Evaporation 3.10 The Psychrometric Chart 3.11 Humidity When It Rains or Snows References Further Reading 4. Consequences of the Maxwell-Boltzmann | 48
51
52
53
55
57
59
59 | |--|---------------------------------|--|--| | Author Biography | xxix | Distribution | | | THEORETICAL GROUNDS, KEY
VARIABLES, MAIN DETERIORATION | | 4.1 The Maxwell-Boltzmann Equation and the Distribution of Molecules by Velocities 4.2 Thermal Emission of Bodies 4.3 The Arrhenius Equation 4.4 Saturation Pressure of Water Vapour in Air | 61
62
63
64 | | MECHANISMS 1. Microclimate and Atmospheric Variables 1.1 Microclimate 1.2 Air, Water Vapour, Perfect and Real Gases 1.3 The Internal Boundary Layer and the Viscous Layer 1.4 Coanda Effect 1.5 Atmospheric Variables and Parameters References | 3
7
9
11
12
13 | 4.5 Relative Humidity and Mutual Distance Between H₂O Molecules 4.6 The Liquid State and the Free H₂O Molecules in It 4.7 The Raoult Law for Ideal Solutions 4.8 Ebullition and Freezing 4.9 An Additional Aspect of Relative Humidity 4.10 The Three Classes of Water Vapour 4.11 Conclusions References 5. Physics of Drop Formation and Micropore | 65
67
67
68
68
70
70 | | 2 Tomporature A Voy Variable in Conservation | 0 | Condensation | | | 2. Temperature: A Key Variable in Conservation and Thermal Comfort | 1 | 5.1 How a Curved Water Meniscus Changes
the Equilibrium Vapour Tension5.2 Derivation of the Kelvin Equation for Droplet | 73 | | 2.1 Temperature: One Variable, Four Popular Definitions2.2 Mechanisms of Temperature-Induced Deterioration | 15
16 | Formation and Micropore Condensation 5.3 The Formation of Droplets in the Atmosphere: | 75 | | 2.3 The Urban Heat Island | 21 | Homogeneous and Heterogeneous Nucleation | 79 | | 2.4 Temperature in a Building, a Room 2.5 Temperature in a Showcase | 22
28 | 5.4 Bubbles5.5 Micropore Condensation and Stone Weathering | 81
82 | | 2.6 People's Thermal Comfort and Discomfort | 30 | 5.6 Adsorption Isotherms | 87 | | 2.7 Is It Possible to Combine People's Comfort, Conservation Needs, and Sustainability?2.8 Planning Air Temperature Monitoring to | on
31 | 5.7 Freeze–Thaw Cycles
References | 89
91 | | Study Air-Surface Interactions and for Environmental | 26 | 6. Humidity and Deterioration Mechanisms | | | Diagnostics References Further Reading | 36
40
42 | 6.1 Air–Surface Interactions and Environmental Diagnostics6.2 The Equilibrium Moisture Content and Dimensional
Changes in Wood | 93
97 | | 3. Theoretical Grounds for Humidity | | 6.3 Mechanisms of Humidity Degradation in Paper and
Parchment | 101 | | 3.1 Partial Pressure of Water Vapour | 43 | | 106 | | 3.2 Derivation of the Latent Heat3.3 Mixing Ratio of Water Vapour and Dry Air | 44
46 | 6.5 Molecular Layers of Water on the Surface of Metals and Glass | 109 | | 3.4 Specific Humidity | 47 | 6.6 Chemical Forms of Decay | 111 | | 3.5 Absolute Humidity | 48 | | 112 | | vi | CONT | ENTS | | | CONT | ENTS | v | |--|---|---|---|--|---|--|--| | 6.8 What Is the Best Microclimate for Conservation? 6.9 Keeping Constant Relative Humidity in Rooms and Showcases 6.10 Condensation on Cold Surfaces 6.11 People as a Moisture Source | 114
115
119
120 | Urban Climate: Heat Island and Aerodynamic
Disturbance Dispersion and Transportation of Pollutants
in a City Off Priction Near a Surface | 181
182
183 | 12.13 Photosensitivity Classes of Materials and Exhibition
Lighting Recommended by International Standards
References 13. Photometric Aspects of Visible Light | 269
271 | 15.8 EN 16682 (2017) for Measurements of Moisture
Content in Materials
15.9 EN 15999-1 (2013) for Design of Showcases
References | 35
35
35 | | References 7. Atmospheric Water, Capillary Rise, and Stone Weathering | 121 | 10.7 Vertical Pluxes of Heat, Moisture and Momentum 10.8 Heat Balance at the Soil or the Monument Surface 10.9 Main Parameters Used in Measuring Atmospheric Stability and Turbulence 10.10 Plume Dispersion 10.11 Stability Classes to Evaluate Atmospheric Stability References 11. Dry Deposition of Airborne Particulate Matter—Mechanisms and Effects 11.1 Introduction 11.2 Random Walk and Brownian Diffusivity 11.3 Brownian Deposition 11.4 Thermophoresis 11.5 Diffusiophoresis 11.6 Stefan Flow 11.7 Gaviational Settling | 183
185
188
191
191
194
197
199
201
202
204
205
207 | and Colours 13.1 Visible Light and Colour Perception 13.2 Tickhomatic Theory and Metamers 13.3 Munsell Colour System (HSV System) 13.4 CIE Chromaticity Diagram 13.5 The ROB Additive Light System 13.6 The CMY Subtractive Colour System 13.7 Transformation Between the ROB and CMY Colour Spaces 13.8 The Colour of Objects, Polychromies, and Paintings 13.9 Use of Complementary Colours in Visual Arts 13.10 Optics of Halftone Imaging and the Neo-Impressionism 13.11 How to Improve the Colour Rendering of Electric Lighting 13.12 What is the Colour of Solar Light? | 273
275
276
277
279
282
285
286
288
290
293
295
298 | 16. Introduction to Field Measurements 16.1 Field Observations and Computational Fluid Dynamics 16.2 Planning Field Measurements 16.3 Traditional and Innovative Sensors 16.4 Weather Stations and Observations for Monument Conservation 16.5 Statistical Representation of Data 16.6 Prequency of Observation 16.7 Length of Observation Period 16.8 Response Time of a Sensor 16.9 Drawing Air Temperature and Other Isolines References | 35
36
36
36
36
36
36
37
37 | | 8.2 Removing Causes
8.3 Hiding Effects | 154
154 | 11.8 Electrophoresis
11.9 Photophoresis | 208
210 | IV | | MEASURING INSTRUMENTS AND
THEIR DEVELOPMENT | J | | 8.4 Damp-Proof Course With Physical Barrier 8.5 Damp-Proof Course With Chemical Barrier 8.6 Increasing Wall Temperature 8.7 Ventilation Within the Wall 8.9 Ventilating Outside the Wall 8.9 Dehumidifying Plasters 8.10 Active Electro-Osmosis 8.11 Passive Electro-Osmosis 8.12 Parapsychological Devices 8.13 Dying Damp Murals References | 155
155
157
158
159
159
159
163
163
164
165 | 11.10 Aerodynamic Deposition: Inertial Impaction and Interception 11.11 Adhesion of Particles to Paintings or Other Surfaces 11.12 Vertical Distribution of Particles in Still Air and The Resuspension by Turbulence 11.13 How Soiling Develops 11.14 What is the Most Appropriate Heating and Air Conditioning System to Avoid Soiling? 11.15 Inappropriate Positioning of Paintings 11.16 Uplifting of Giant Particles and Wind Erosion 11.17 Kinetic Energy, and Sand Blasting References | 210
215
ir
216
218
221
226
227
232
233 | CLIMATE-RELATED RISKS 14. Climate Change, Human Factor, and Risk Assessment 14.1 Part 1: Basic Concepts on Climate Changes, Emission Scenarios and Potential Damage 14.2 Part 2: Future Scenarios and Risk Assessment 14.3 Part 3: Selected Impact Case Studies References Further Reading | 303
308
313
336
340 | 17. Measuring Temperature 17.1 Part 1. Historical Overview: The Development of Early Themometers and Basic Ideas 17.2 Part 2. Modern Technology to Measure Air Temperature 17.3 Part 3. Modern Technology to Measure Artwork Surface Temperature References Further Reading | 38
40
41
42
42 | | ATMOSPHERIC STABILITY, POLLUTANT DISPERSION AND SOILING OF PAINTINGS AND MONUMENTS | - | RADIATION, LIGHT AND COLOURS | - | V EUROPEAN STANDARDS AND FIE SURVEYS | LD | 18. Measuring Air Humidity 18.1 Part 1. Historical Overview: The Development of Early Hygrometers and Basic Ideas 18.2 Part 2. Modern Technology to Measure Air Humidity References | 43
44
45 | | 9. Parameters to Describe Air Masses and Vertical Air Motions 9.1 Equivalent Temperature 9.2 Adiabatic Gradients in Troposphere 9.3 Potential Temperature 9.4 Equivalent-Potential Temperature 9.5 Virtual Temperature 9.5 Virtual Temperature 10. Atmospheric Stability and Pollutant Dispersion 10.1 Introduction 10.2 Vertical Temperature Gradients and Plume Behaviour 10.3 Effects Due to Topographic Horizontal Inhomogeneity | 175
177 | 12. Radiometric Aspects of Solar Radiation, Black and Lamp Radiation 12.1 Radiation Emitted by Bodies and Effects of the Absorbed Energy 12.2 Radiometric Temperature 12.3 Angular Distribution of Radiant Emission of Bodies 12.4 Attenuation of Light in the Atmosphere 12.5 Daily and Seasonal Cycles of Solar Radiation on Monuments 12.6 Length of Shadow 12.7 Electric Lamps for Cultural Heritage 12.8 Problems Encountered in Exhibition Lighting 12.9 Optical Filters and Optical Fibres 12.10 Degradation of Works of Art Caused by Light 12.11 Photographic Flash Light 12.12 Phototrophic Organisms | 237
239
240
241
241
247
249
255
258
264
267
268 | 15. European Standards Concerning Microclimate Cultural Heritage and Its Measurement 15.1 Introduction. International and European Standards 15.2 EN 15757 (2010) and the Priotity of Historic Climate 15.3 EN 15759-1 (2011) for Heating Churches 15.4 EN 15759-1 (2018) for Ventilation in Historic Buildings and to Protect Collections 15.5 EN 16883 (2017) for Improving the Energy Performance of Historic Buildings 15.6 EN 15758 (2010) for Measuring Temperatures of the Air and Objects 15.7 EN 16424 (2012) for Measuring Humidity in the Air and Moisture Exchanges | 343
343
347
350
351
352
353 | Measuring Time of Wetness and Moisture in Materials Messuring the Time of Wetness Messuring Moisture in Materials References Measuring Wind and Indoor Air Motions Measure Wind and Basic Ideas Motions Modern Technology to Measure Wind and Air Motions References Further Reading | 45:
46:
47:
48:
49:
50:
51: | | viii | CON | TENTS | | |---|-------------------|---|-------------------| | 21. Measuring Precipitation and Windborne Drops 21.1 Part 1. Historical Overview: The Development of Early Rain Gauges and Basic Ideas 21.2 Part 2. Modern Technology to Measure Precipitation References | 513
520
532 | Appendix 2: Summary of Key Equations to
Calculate Humidity Variables
Appendix 3: Essential Glossary
Relevant Objects, Museums, Monuments, etc.
Exemplified in Figures | 537
539
541 | | Appendix 1: List of Fundamental Constants
Met in This Book | 535 | Index | 547 |