Table of contents

Preface, vii

Chapter 1: Epistemology

1.1 The purpose of this book, 1

The question of what to study, and to what end? Looking at *Mathematica* from the scientist's perspective. *Mathematica* programming references. NeXT programming references.

1.2 Mathematica for education and research, 3

The "calculator crisis" turned around. NeXT window suite. Using *Mathematica* to prepare algorithms in view of fast machine attack.

1.3 Book presentation, 5

The trend of chapters herein. Expression numbering and *Mathematica* program numbering. Format adopted for input/output.

Chapter 2: NeXT interfaces and projects

2.1 Standard NextStep interface, 7

Operation of Release 1.0 *Mathematica* under NextStep. Typical application window appearance. UNIX and concurrency of applications under NextStep.

2.2 Example applications that talk Mathematica, 9

CircuitBuilder application generates pasteable circuit equations. ExpressionBuilder application features expression object embedded in PostScript output.

2.3 Automated messaging, 12

RealTimeAlgebra application uses NextStep Speaker/ Listener connection. Gourmet calculator application uses Droid object for interprocess communication. MathLink standard for the future discussed.

Chapter 3: Graphics for the sciences

3.1 The interplay of 2D and 3D graphics, 15

Gamma function as canonical example of 2D/3D interplay. Visualization and verification of Gamma function asymptotics.

3.2 The importance of resolution, 19

Bad plot of the radial sinc() function: problem of spatial aliasing, cured by sufficient resolution.

3.3 Insight via the contour option, 22

Helicoid surface shows ruled property. Branch cuts exhibited via Contour[] option.

3.4 3D animation of rigid structures, 24

Animation of a rigid pyramidal shell. The importance of extra view orientations.

3.5 When y is not a function of x, 26

Exponential spiral example. Newtonian elliptical orbit example.

3.6 3D parametric plots, 29

Trefoil knot in 2D, 3D, and "sausage" modes. Moebius band, one-sided character of which observed via DensityPlot[].

3.7 Further explorations, 38

Chapter 4: Mathematical examples

4.1 Identities and expansions, 39

Generating function for Legendre polynomials. Rodrigues formula. Poisson summation identity. Jacobi theta function identity. Representations by two integer squares. Cyclotomic polynomials.

4.2 Real and complex analysis, 49

Exact evaluation of $\zeta(4)$. Proof that a surface is a minimal surface. Exact integrals via residue calculus.

4.3 Factorization and primality testing algorithms, 57

Pollard "rho" factorization. Pollard (p-1) factorization. Elliptic curve factorization. Rigorous primality testing. Lucas-Lehmer method for testing of Mersenne numbers.

4.4 Fast algorithms, 67

Muliplication via FFT-based convolution. Fast polynomial reciprocation via Newton's method with adjusted precision. Pre-conditioned Chinese Remainder algorithm.

4.4 Further explorations, 74

Chapter 5: Physics

5.1 Classical mechanics, 75

Hamiltonian formalism. Simple harmonic oscillator. True anharmonic pendulum. Symbolic Hamiltonian iteration. Euler and Runge-Kutta solvers. Pendulum period analyzed via elliptic integrals and AGM.

5.2 Quantum mechanics, 88

Tunnel effect. Symbolic treatment of quantum oscillator. Quantum perturbation theory to 1st and 2nd orders. Numerical integration of the Schroedinger equation.

5.3 Relativity, 107

Einstein energy expansion. Relativistic action principle. Perturbative and exact action methods. Parker-Christenson *MathTensor* system example output. Four-vector relativity calculus and Compton scattering of photons.

5.4 Further explorations, 126

Chapter 6: Linear and non-linear systems

6.1 Linear oscillations, 127

Normal modes. Eigenvalues and eigenvectors. Membrane oscillations and Bessel functions. Damped oscillator. Resonance, phase, frequency shift due to damping.

6.2 Solitons, 140

Kortewig-de Vries equation. Pitfalls of naive numerical integration. Numerical improvements: double-time-step and proper 3rd difference operator. Space-time soliton collision diagrams. Exact KdV solutions via *Mathematica* symbolics.

6.3 Chaos and fractals, 156

Bifurcation in quadratic maps. Feigenbaum period-doubling

constant. Mandelbrot set. Sierpinski gasket fractal. Fractal nature of recursive squaring. Measurement of fractal dimensions.

6.4 Further explorations, 168

Chapter 7: Chemistry and biology

7.1 Reactions, 169

Balancing of reactions and stoichiometry. Equilibrium reaction algebra. Efficient chemical production from expensive reagents.

7.2 Quantum chemistry, 175

Hydrogen atom treatment via finite element method. Helium atom: exact variational treatment for separated trial wave function *ansatz*.

7.3 Genetics and population biology, 185

Algebra for recombinant gene data. Population combinatorics for two alleles. Genetic drift and extinction. Exact treatment of Markov process time expectations.

7.4 Neurobiology, 197

Nerve action potentials. Hodgkin-Huxley equations. Explicit calculation of nerve propagation velocity.

7.5 Further explorations, 204

Chapter 8: Electronics and signal processing

8.1 Electronic circuits, 205

LC tank circuit. Resonance and phase plots.

3rd order active filter example. Non-linear diode circuit. Logic gate circuit.

8.2 Applications of the FFT, 217

Relation between standard engineer's FFT and *Mathematica* Fourier[] and InverseFourier[]. Symmetry rules for pure-real FFTs. Square-wave spectrum. Tone burst spectrum. Windowing technique for reduction of sidebands. AM signal spectrum: decibel plot. Real-world speech signal

analyzed. Spectrogram and sonogram plots.

8.3 Digital filters, 232

General LTI filter algorithm. Recursive, tunable bandpass example. Non-recursive filter design. Bandpass example with explicit center frequency and bandwidth input parameters. Example plot of signal pulled out of noise.

8.4 Image processing, 241

Loading of image files. Pixel arithmetic in *Mathematica*. Edge detection via Laplacian operator.

8.5 Further explorations, 246

Chapter 9: Great problems of history

9.1 Problems solved and unsolved, 247

Great problems of history are solved, partially solved, or open. *Mathematica* explorations can verify and sometimes reproduce historical results.

9.2 Fermat's "Last Theorem", 248

Kummer's regular primes. The Vandiver criterion for irregular primes. Alternative Bernoulli number identities. Current status of numerical research.

9.3 The Riemann Zeta function and prime numbers, 255

Euler product for $\zeta(s)$ verified. Prime Number Theorem stated. Rigorous results on ζ zeros exemplified. Polynomial-root approximation of zeros via Hermite series introduced. Accurate estimates for $\pi(x)$. Zeros of $\zeta(s)$ on Re(s) = 1.

9.4 Theories of gravitation, 270

Newton's original result: a sphere gravitates as if concentrated at its center. Derivation of Newtonian orbits from first principles. General-relativistic precession of the orbit of Mercury.

9.5 Further explorations, 281

References, 283

Index, 289