Contents

Reference@nadeshibbisidOnhibbisidEbasisEbak bliefTansraoqeif Hybridization Mechanics 80 Preface 13 Acknowledgments 17

1. Genetics and Its Applications, by M. Brett Callaway and Dorothy J. Callaway 19 The Basics: Cells, Chromosomes, and Genes 19 Mendelian or Qualitative Inheritance 26 More Than One Gene 29 Many Genes—Quantitative Genetics 30 Quantitative Traits and the Effect of the Environment 31 Inheritance in Polyploids 34

J. Breeding Dayfilles (Heimelodadhs) by (Ted fin Penishh Shillys C aniboses . T.

Important Train and Breidflagsfällieeistem ichlosit veM

Hybridization Elechpsichind@H ylilysCl to ynotsiH? toint

Important Traits and Breeding Objectsves decagaques

Important Breeding Malbadalandhistoha bus monetala

Important Traits and Breeding Objectives 167

Propagation 170 by anibosed to aquosi) vall

Resources 171 Tr conil aniboord merconni

4. Breeding Daffodils, by Elise Righenspirsthank noingsbrekil

Bulliteeding Gesneriads, by Peter Shalit 155 Of appropriate

Important Breeding Materials 1322 yewellsO. Lydronoff

Breeding Tetraploids 65

80 nonsegaçori

References and Additional Reading 37

2. Plant Breeding—Practical Matters, by M. Brett Callaway and Dorothy J. Callaway 39

Program Objectives 39 Improving Efficiency 40 Sampling 41 Putting It All Together 42 Labeling and Record Keeping 43 Pedigrees 44 Propagation of Selections 45 Naming Selections 45 Plant Protection and Trademarks 47 References and Additional Reading 48

- 3. Breeding Daylilies (Hemerocallis), by Ted L. Petit and Dorothy J. Callaway 49
 Key Groups for Breeding 50
 Brief History of Daylily Hybridizing 52
 Important Traits and Breeding Objectives 56
 Breeding Tetraploids 65
 Hybridization Mechanics 65
 Propagation 68
 Resources 70
 References and Additional Reading 73
- 4. Breeding Daffodils, by Elise Havens 74

 Key Groups for Breeding 74

 Important Breeding Lines 77

 Important Traits and Breeding Objectives 79

 Hybridization Mechanics 80

 Propagation 81

 Resources 82

 References and Additional Reading 84
- 5. Breeding Siberian Iris, by Currier McEwen 85
 Planned vs. Natural Crosses 85
 Important Traits and Breeding Objectives 86
 Hybridization Mechanics 88
 Developments for the Future 94
 Resources 95
 References and Additional Reading 101
- 6. Breeding Hostas, by James W. Wilkins Jr. 103
 Important Traits and Breeding Objectives 104
 Hybridization Mechanics 110
 Propagation 114
 Resources 116
 References and Additional Reading 118
- 7. Breeding Ornamental Aroids, by R. J. Henny 121
 Important Traits and Breeding Objectives 122
 Hybridization Mechanics 126
 Resources 130
 References and Additional Reading 131

- 8. Breeding African Violets, by Jeffrey L. Smith 133
 Important Breeding Materials 138
 Important Traits and Breeding Objectives 142
 Hybridization Mechanics 146
 Propagation 148
 Resources 151
 References and Additional Reading 154
- 9. Breeding Gesneriads, by Peter Shalit 155
 Important Breeding Materials 157
 Important Traits and Breeding Objectives 167
 Hybridization Mechanics 168
 Propagation 170
 Resources 171
 References and Additional Reading 172
- History of Amaryllis Breeding 175
 Important Traits and Breeding Objectives 177
 Breeding for Specific Traits 182
 Hybridization Mechanics 184
 Seed Propagation and Growth to Flowering of Hybrids 187
 Evaluating Hybrid Progeny 189
 Vegetative Propagation of Selected Clones 190
 Induction of Polyploidy and Mutations 191
 Resources 192
 References and Additional Reading 194
- Resources 209
 References and Additional Reading 210

 Rey Groups for Breeding 196

 Rey Groups for Breeding 196

 Breeding Objectives 199

 Inheritance of Traits 201

 Hybridization Mechanics 203

 Seed Collection and Germination 206

 Propagation 208

 References and Additional Reading 210

- 12. Breeding Rhododendrons and Azaleas, by H. Edward Reiley 213
 Important Traits and Breeding Objectives 214
 Hybridization Mechanics 219
 Seedling Evaluation 223
 Resources 225
 References and Additional Reading 226
- 13. Breeding Kalmia: Mountain Laurel and its Relatives,
 by Richard A. Jaynes 227
 Important Breeding Materials 227
 Important Traits and Breeding Objectives 231
 Hybridization Mechanics 234
 Propagation 236
 Resources 237
 References and Additional Reading 240
- 14. Breeding Camellias, by William L. Ackerman 241
 Important Breeding Materials 241
 Important Traits and Breeding Objectives 243
 Hybridization Mechanics 244
 Propagation 250
 Hybridizing Can Be Fun 252
 Resources 252
 References and Additional Reading 255
- 15. Breeding Lilacs: Plant of History, Plant for Tomorrow, by Owen M. Rogers 257
 Important Breeding Materials 257
 Important Traits and Breeding Objectives 261
 Hybridization Mechanics 263
 Propagation 266
 Final Note 266
 Resources 267
 References and Additional Reading 269

Resources; \$209 yours! I. H. W. disions istnaments ambrooks T. References; \$200 and Additional Resident to 210 are interested.

Propagation 208

- Key Groups for Breeding 270
 Important Breeding Materials 272
 Important Traits and Breeding Objectives 275
 Hybridization Mechanics 277
 Propagation 279
 Resources 280
 References and Additional Reading 284
- Taxonomy and Breeding Materials 288
 History 289
 Important Traits and Breeding Objectives 290
 Hybridization Mechanics 293
 Propagation 295
 Resources 296
 References and Additional Reading 298

Appendix: Sources of Plant Breeding Supplies 301
Glossary 303
Notes on Contributors 306
Index of Plant Names 311

Feet Gee Baker 1965; Harlan 1976; Kaplan 1971; Mangleadorf 1974; Mar-

ces acred upon this genetic variation, resulting in plants that were bet-

the solved for agriculture, in grains, for example, wild plants rely on their

e e elembo harvest grains without loging seeds. Similarly, human selection

and favor fruits with fewer seeds, whereas natural sciection would likely

Color plates follow pages 48 and 240