Contents

Acknowledgements About This Book

Part I Fundamentals of Dynamic Models

- 1 Why Do We Model?
 - 1.1 Myths of modeling
 - 1.2 Types of models
 - 1 1 1 1 1

3

8

9

0

	1.2.1	Organizational scales	9
	1.2.2	Purpose	9
	1.2.3	Model endpoint	10
	1.2.4	Statistical or mathematical?	10
1.3	Develo	oping your model	11
	1.3.1	Steps in model development	11
	1.3.2	Advanced applications and topics	16
	1.3.3	The rest of the process	20
	1.3.4	Modeling is not a linear process	22
Intr	oducti	ion to Population Models	25
2.1	Introd	uction to population dynamics	25
2.2	Funda	mental structure of population models	26
2.3	Densit	ty-independent models	27
	2.3.1	Continuous-time density-independent models	30
2.4	Develo	oping a density-dependent model	31
	2.4.1	The logistic model	32
	2.4.2	Advanced: Continuous logistic models	34
	2.4.3	Other density-dependent models	34
	2.4.4	Allee effects	36
2.5	Dynar	nic behavior of density-dependent models	37
2.6	2.6 Cobwebbing		38
	2.6.1	Interpreting cobweb diagrams	40
	2.6.2	Advanced: What governs dynamic behavior?	43
Stru	icture	d Population Models	47
3.1	Types	of population structure: Age versus stage structure	47
	3.1.1	An example of age structure	48
	3.1.2	An example of stage structure	48
	3.1.3	Transient and stable behaviors of structured models	49
	3.1.4	Advanced: Deriving recursive equations	50
	3.1.5	Advanced: Life-table analysis, reproductive outputs,	
		and Euler's equation	51

113.5 Advanced: Squezared density dependent models sau I blueve nad V

xii Contents

7 Random Variables and Probability			109
6	Why	y Fit Models to Data?	105
Pa	rt II	Fitting Models to Data	
	5.8	Structured stochastic models	101
	50	5./.1 Allee effects Structured stochastic models	100
	5.7	Density-dependent stochastic models	99
	5.6	Uncertainty in model parameters	98
		5.5.1 Advanced: Autocorrelation	96
	5.5	Estimating extinction risk	94
	5.4	Eastern Pacific Southern Resident killer whales	93
		5.3.1 Projecting forward with unknown future stochasticity	91
	5.3	Density-independent predictions: An analytic result	90
		5.2.5 Why was the arithmetic mean incorrect?	89
		5.2.4 Advanced: Why does stochasticity lower population abundance?	88
		5.2.3 So, why aren't all models stochastic?	88
		5.2.2 Reason 2	88
		5.2.1 Reason 1	87
	5.2	Why consider stochasticity?	87
		5.1.1 What causes stochasticity?	86
	5.1	Introduction	85
5	Stoc	chastic Population Models	85
	4.5	Larger models	80
	1 -	4.4.5 Advanced: Why does the eigenvalue predict stability?	76
		4.4.4 Calculating stability	73
		4.4.3 Background and framework	72
		4.4.2 A brief aside on predator-prey models	69
		4.4.1 Motivation	69
	4.4	Analytic stability analysis	69
		4.3.2 Key points	67
		4.3.1 Continuous-time model	67
	4.3	Isocline analysis	64
		4.2.1 Continuous-time model	63
	4.2	Solving for equilibria	62
		4.1.2 What does "stability" mean?	61
	4.1	4.1.1 Consider the following two ecological scenarios	61
ite	11	Introduction	61
4	Con	npetition and Predation Models	61
	3.5	Advanced: Structured density-dependent models	57
		3.4.1 Advanced: How to calculate elasticities	56
	3.4	Elasticity analysis	55
	3.3	Characteristics of structured models	54
	5.2	3.2.1 Why do we bother with matrix representation?	53
	3.2	Modeling using matrix notation	52

.

	7.1	Introduction		109
		7.1.1 What is a random variable?		109
	7.2	Binomial		111
		7.2.1 Key things about this distribution		111
		7.2.2 The probability mass function		, 111
		7.2.3 When would I use this?	p boodzienii w si mri'W 1.2.3	111
		7.2.4 Properties of the function		112
		7.2.5 Example		112
	7.3	Poisson		113
		7.3.1 Key things about this distribution		113
		7.3.2 The probability function		113
		7.3.3 When would I use this?	Estimating parameters of dya	114
		7.3.4 Properties of the function		114
		7.3.5 Example		114
	7.4	Negative binomial		115
		7.4.1 Key things about this function		115
		7.4.2 When would I use this?		115
		7.4.3 The probability function		115
		7.4.4 Properties of the function		116
		7.4.5 Example		116
	7.5	Normal		117
		7.5.1 Key things about this distribution		117
		7.5.2 When would I use this?		117
		7.5.3 The probability density function		117
		7.5.4 Properties of the function		118
		7.5.5 Example		118
	7.6	Log-normal		118
	1	7.6.1 Key things about this distribution		118
		7.6.2 When would I use this?		119
		7.6.3 The probability density function		119
		7.6.4 Properties of the function		119
		7.6.5 Example		119
	7.7	Advanced: Other distributions		119
		7.7.1 The gamma distribution		119
		7.7.2 The beta distribution	When is Bayes' theorem, and I	120
		7.7.3 Student's t-distribution		120
		7.7.4 The beta-binomial distribution		121
		7.7.5 Zero-inflated models		122
1				105
8	Like	elihood and Its Applications		125
	8.1	Introduction		125
		8.1.1 Was this a fair coin?		126
		8.1.2 Likelihood to the rescue		126
		8.1.3 Maximum likelihood estimation		126
		8.1.4 What likelihood is not		127
	8.2	Parameter estimation using likelihood		128
	8.3	Uncertainty in maximum likelihood parar	neter estimates	130

xiv Contents

		8.3.1 Calculating confidence intervals using likelihoods	130
		8.3.2 To summarize	132
		8.3.3 Practice example 1	132
	8.4	Likelihood with multiple observations	133
	8.5	Advanced: Nuisance parameters	135
		8.5.1 What is a likelihood profile?	135
		8.5.2 Example	136
		8.5.3 The likelihood profile	137
	8.6	Estimating parameters that do not appear in probability functions	138
		8.6.1 Entanglements of Hector's dolphins	138
		8.6.2 Practice example 2	141
	8.7	Estimating parameters of dynamic models	142
	8.8	Final comments on maximum likelihood estimation	145
	8.9	Overdispersion and what to do about it	146
9	Mode	Selection	149
-	inouc.		150
<u>G</u> , I-1	9.1	Framework	150
	9.2	An intuitive method: Cross validation	152
	9.3	The Akaike information criterion as a measure of model performance	153
		9.3.1 Take-nome points	154
		9.3.2 Advanced: I neoretical underpinnings of information theory	154
	0.4	9.3.3 Alternatives to the AIC	150
	9.4	O 4 1 Nested venue nonnested	157
		9.4.1 Inested versus nonnested	150
	0.5	9.4.2 Fit to data	162
	9.5	0.5.1 Model selection prectices to avoid	162
		9.5.1 True story	162
		9.5.2 True story	102
10	Baye	sian Statistics	165
	10.1	Introduction	165
		10.1.1 Are you a frequentist or a Bayesian?	165
0.11		10.1.2 Wait, what are you talking about?	165
		10.1.3 So, how is this different from likelihood?	166
	10.2	What is Bayes' theorem, and how is it used in statistics	
		and model selection?	167
		10.2.1 Doesn't the prior probability influence the posterior probability?	168
	10.3	Practice example: The prosecutor's fallacy	169
	10.4	The prior	170
		10.4.1 Example: Do people have extrasensory perception?	171
		10.4.2 Criticisms	171
	10.5	Bayesian parameter estimation	172
		10.5.1 How do we do that?	173
		10.5.2 Monte Carlo methods	174
		10.5.3 Laplace approximation	176
		10.5.4 Mechanics of using the prior	177
	10.6	Final thoughts on Bayesian approaches	178

.

183

183

184

185

185

185

185

188

189

Skills Part III **Mathematics Refresher** 183 11 11.1 Logarithms 11.1.1 Common operations with logarithms 11.2 Derivatives and integrals 11.3 Matrix operations 11.3.1 Dimensions of matrices 11.3.2 Adding two matrices Multiplying two matrices 11.3.3 Modeling in Spreadsheets 187 12 12.1 Practicum: A logistic population model in Excel 12.1.1 Naming spreadsheet cells

	12.2	Useful spreadsheet functions		190
		12.2.1 Exercise		191
	12.3	Array formulas		192
		12.3.1 Exercise	15.4 Structurel uncertainty	192
	12.4	The data table		192
		12.4.1 Exercise	BIGUIS FOR FTITIDE MODELS TO DATE	193
	12.5	Programming in Visual Basic		194
		12.5.1 Creating your own functions	in Visual Basic	196
13	Mod	eling in R		199
	13.1	The basics		200
		13.1.1 First, some orientation		200
		13.1.2 Writing and running R code		200
		13.1.3 Statistical functions		203
		13.1.4 Basic plotting		204
		13.1.5 Data input and output		205
		13.1.6 Looping		206
		13.1.7 Loops within loops		207
	13.2	Practicum: A logistic population mod	lel in R	207
	13.3	Creating your own functions		209
14	Skills	s for Dynamic Models	17.1.3 ·Evaluating fits of the o	213
	14.1	Skills for population models		213
		14.1.1 Implementing structured pop	oulation models	213
		14.1.2 Cobwebbing	1723 Evelypering fits of the n	221
	14.2	Skills for multivariable models		223
		14.2.1 Calculating isoclines		223
		14.2.2 Calculating Jacobian matrice	S	226
	14.3	Monte Carlo methods		229
		14.3.1 Monte Carlo example: What	is π ?	229
		14.3.2 Monte Carlo simulation of p	opulation models	231
		14.3.3 Spreadsheet guidance		232
		14.3.4 R guidance		234
	14.4	Skills for stochastic models		235
		14.4.1 Stochastic models in spreads	heets	235

xvi Contents

	14.4.2 Stochastic models in R	238
	14.4.3 Advanced: Adding autocorrelation	239
	14.4.4 Propagating uncertainty	242
	14.5 Numerical solutions to differential equations	243
	14.5.1 The Euler method	244
	14.5.2 The Adams-Bashford method	245
	14.5.3 Runge-Kutta methods	246
15	Consistivity Anolysis	251
15	Sensitivity Analysis	251
	15.1 Introduction	251
	15.1.1 Types of sensitivity analysis	251
	15.1.2 Steps in sensitivity analysis	252
	15.1.3 Example: Tree snakes	252
	15.2 Individual parameter perturbation	255
	15.2.1 Quantifying sensitivity	256
	15.2.2 Global sensitivity analysis	257
	15.3 The Monte Carlo method	258
	15.4 Structural uncertainty	262
16	Skills for Fitting Models to Data	263
	16.1 Maximum likelihood estimation	263
	16.1.1 Maximum likelihood estimation. Direct method	264
	16.1.2 Maximum likelihood estimation: Numerical methods	267
	16.2 Estimating parameters that do not appear in probability functions	207
	16.2 Likelihood profiles	275
	16.3.1 Profiles in enreadebeets	275
	16.3.2 Profiles in R	270
		211
Part	V Putting It All Together and Next Steps	
17	Putting It Together: Fitting a Dynamic Model	283
	17.1 Fitting the observation error model	284
	17.1.1 Observation error model in spreadsheets	285
	17.1.2 Observation error model in R	286
	17.1.3 Evaluating fits of the observation error models	287
	17.2 Fitting the process error model	288
	17.2.1 Process error model in spreadsheets	289
	17.2.2 Process error model in R	289
	17.2.3 Evaluating fits of the process error models	290
	17.3 Parameter estimates and model selection	291
	17.4 Can this population exhibit complex population dynamics?	292
18	Next Steps	295
	18.1 Reality check	295
	18.2 Learn by doing	296
	18.2.1 True story	297
Bibl	ography	298
Inde		303