Contents

Preface to the second edition Preface to the first edition

The amburdent structed was interviewed

page xi xiii

Dynamic modelling PARTI Introduction 1 What this book is about 1.1 The rise in economic dynamics 1.2 Stocks, flows and dimensionality 1.3 Nonlinearities, multiple equilibria and local stability 1.4 Nonlinearity and chaos 1.5 Computer software and economic dynamics 1.6 Mathematica and Maple 1.7 Structure and features 1.8 Additional reading 2 Continuous dynamic systems Some definitions 2.1 Solutions to first-order linear differential equations 2.2

23 Compound interact

183 8 186

41

45

53

54

59

64

66

70

73

77

79

80

2.3	Compound interest
2.4	First-order equations and isoclines
2.5	Separable functions
2.6	Diffusion models
2.7	Phase portrait of a single variable
2.8	Second-order linear homogeneous equations
2.9	Second-order linear nonhomogeneous equations
2.10	Linear approximations to nonlinear differential equations
2.11	Solving differential equations with Mathematica
2.12	Solving differential equations with Maple
Appe	ndix 2.1 Plotting direction fields for a single equation
	with Mathematica
Appe	ndix 2.2 Plotting direction fields for a single equation
	with Maple
Exerc	eises
Addit	tional reading

vi Contents

3	Discrete dynamic systems		
	3.1	Classifying discrete dynamic systems	85
	3.2	The initial value problem	86
	3.3	The cobweb model: an introduction	87
	3.4	Equilibrium and stability of discrete dynamic systems	88
	3.5	Solving first-order difference equations	99
	3.6	Compound interest	105
	3.7	Discounting, present value and internal rates of return	108
	3.8	Solving second-order difference equations	110
	3.9	The logistic equation: discrete version	118
	3.10	The multiplier-accelerator model	123
	3.11	Linear approximation to discrete nonlinear difference	
		equations	127
	3.12	Solow growth model in discrete time	130
	3.13	Solving recursive equations with Mathematica	
		and Maple	131
	Appe	endix 3.1 Two-cycle logistic equation using Mathematica	135
		endix 3.2 Two-cycle logistic equation using Maple	137
	Exerc		138
	Addi	tional reading	141
		1.3 · Stocks, Howe and difficienting my blands and a	
1	Suct	ems of first-order differential equations	142
21	4.1		142
	4.1	Definitions and autonomous systems The phase plane, fixed points and stability	142
	4.2	Vectors of forces in the phase plane	145
			149
	4.4	Matrix specification of autonomous systems	150
	4.5	Solutions to the homogeneous differential equation system: real distinct roots	160
	4.6	Solutions with repeating roots	162
	4.7	Solutions with complex roots	164
	4.7	Nodes, spirals and saddles	166
	4.0	roues, spirais and saddies	178
		Stability/instability and its matrix specification Limit cycles	170
	4.10	Euler's approximation and differential equations	179
	4.11		183
	4 12	on a spreadsheet Solving systems of differential equations with	105
	4.12	Mathematica and Maple	196
	1	manana and mapie	186
	Appe	endix 4.1 Parametric plots in the phase plane: continuous variables	194
	Exerc	continuous variables	
		01000	196
	Addi	tional reading	200
5	Disc	rete systems of equations	201
	5.1	Introduction	201
	5.2	Basic matrices with Mathematica and Maple	204
	5.3	Eigenvalues and eigenvectors	208

.

Contents vii

2

5.4	Mathematica and Maple for solving discrete systems	214
5.5	Graphing trajectories of discrete systems	220
5.6	The stability of discrete systems	223
5.7	The phase plane analysis of discrete systems	235
5.8	Internal and external balance	239
5.9	Nonlinear discrete systems	245
Exer	cises	247
Add	itional reading	250
Opti	mal control theory	251
6.1	The optimal control problem	251
6.2	The Pontryagin maximum principle: continuous model	252
6.3	The Pontryagin maximum principle: discrete model	259
6.4	Optimal control with discounting	265
6.5	The phase diagram approach to continuous time	
	control models	270
Exer	cises	283
Add	itional reading	285
	10.1 Goods market dynamics	
Cha	10.2 Goods and money market dynamics	286
	os theory Introduction	286
7.1		
7.2	Bifurcations: single-variable case	287
7.3	The logistic equation, periodic-doubling bifurcations	202
7.4	and chaos	293
7.4	Feigenbaum's universal constant	301
7.5	Sarkovskii theorem	302
7.6	Van der Pol equation and Hopf bifurcations	304
7.7	Strange attractors	307
7.8	Rational choice and erratic behaviour	312
7.9	Inventory dynamics under rational expectations	315
	cises	319
Add	itional reading	321
II Ap	plied economic dynamics	
Den	nand and supply models	325
8.1	Introduction	325
8.2	A simple demand and supply model in continuous time	326
8.3	The cobweb model	332
8.4	Cobwebs with Mathematica and Maple	338
8.5	Cobwebs in the phase plane	339
8.6	Cobwebs in two interrelated markets	346
8.7	Demand and supply with stocks	349
8.8	Stability of the competitive equilibrium	353
8.9	The housing market and demographic changes	358

6

7

PART

9

10

11

12

App	endix 8.1 Obtaining cobwebs using Mathematica		
	and Maple	367	
Exer	cises	371	
Add	Additional reading		
-		275	
Dyn	amic theory of oligopoly	375	
9.1	Static model of duopoly	375	
9.2	Discrete oligopoly models with output adjusting		
	completely and instantaneously	377	
9.3	Discrete oligopoly models with output not adjusting		
	completely and instantaneously	389	
9.4	Continuous modelling of oligopoly	398	
9.5	A nonlinear model of duopolistic competition (R&D)	405	
9.6	Schumpeterian dynamics	414	

Exercises Additional reading

Closed economy dynamics Goods market dynamics 10.1 Goods and money market dynamics 10.2 **IS-LM** continuous model: version 1 10.3 Trajectories with Mathematica, Maple and Excel 10.4 Some important propositions 10.5 **IS-LM** continuous model: version 2 10.6 Nonlinear IS-LM model 10.7 Tobin-Blanchard model 10.8 Conclusion 10.9 Exercises Additional reading

The dynamics of inflation and unemployment

11.1	The Phillips curve	470
11.2	Two simple models of inflation	472
11.3	Deflationary 'death spirals'	484
11.4	A Lucas model with rational expectations	490
11.5	Policy rules	493
11.6	Money, growth and inflation	494
11.7	~	500
11.8	Unemployment and job turnover	506
11.9	Wage determination models and the profit function	509
11.10	Labour market dynamics	513
Exerc	eises	516
Addit	tional reading	518
Oper	economy dynamics: sticky price models	519
12.1	The dynamics of a simple expenditure model	519
12.2	The balance of payments and the money supply	524

12.3	Fiscal and monetary expansion under fixed	
	exchange rates	532
12.4	Fiscal and monetary expansion under flexible	
	exchange rates	539
12.5	Open economy dynamics under fixed prices and	
	floating	545
Exerc	ises	551
Addit	ional reading	552
Open	economy dynamics: flexible price models	553
13.1	A simplified Dornbusch model	554
13.2	The Dornbusch model	559
13.3	The Dornbusch model: capital immobility	564
13.4	The Dornbusch model under perfect foresight	567
13.5	Announcement effects	573
13.6	Resource discovery and the exchange rate	581
	The monetarist model	586
Exerc	ises	589
Addit	ional reading	592
Popu	lation models	593
14.1	Malthusian population growth	593
	The logistic curve	596
14.3	An alternative interpretation	601
14.4	Multispecies population models: geometric analysis	603
14.5	Multispecies population models: mathematical analysis	619
14.6	Age classes and projection matrices	626
	ndix 14.1 Computing a and b for the logistic equation	
	using Mathematica	630
Appe	ndix 14.2 Using Maple to compute a and b for the	er 6 on
heory	logistic equation	631
Appe	ndix 14.3 Multispecies modelling with Mathematica	cussion
wskar	and Maple	632
Exerc		634
Addit	ional reading	637
The c	lynamics of fisheries	638
15.1	Biological growth curve of a fishery	638
15.2	Harvesting function	644
15.3	Industry profits and free access	647
15.4	The dynamics of open access fishery	650
15.5	The dynamics of open access fishery: a numerical	
	example	654
15.6	The fisheries control problem	658
15.7	Schooling fishery	
15.8	Harvesting and age classes	669

13

14

Exercises Additional reading

A simplified Dominisch model

Answers to selected exercises Bibliography Author index Subject index

673

676

13.5
Autononcement effects
13.7

13.6
Recource discovery and the exclunge Willbarn lamindation

13.7
The monetarist model

13.7
The monetarist model

14.7
The monetarist model

15.7
The monetarist model

15.7
The monetarist model

16.7
The monetarist model

16.7
The monetarist model

16.7
Fopulation reading

16.7
The logistic curve, saturation with an atom state of the logistic curve interpretation at the state of the logistic curve interpretation models at antices and the logistic state of the logisticurve state of the logistic state of the logistic state of the log