Preface – Second Edition Preface – First Edition

1 Origins and Manifestations of Speckle

- 1.1 General Background
- 1.2 Intuitive Explanation of the Cause of Speckle
- 1.3 Some Mathematical Preliminaries

2 Random Phasor Sums

2.1	First and Second Moments	of the	e Real	and	Imaginary	Parts	of the
	Resultant Phasor						

Joint density function of the phases.

xiii

XV

3

4

8

10

13

16

18

20

25

3.5.6 Sums of independent specidly on Missage Transmission at the Start S.6.6.

2.2 Random Walk with a Large Number of Independent Steps

- 2.3 Random Phasor Sum Plus a Known Phasor
- 2.4 Sums of Random Phasor Sums
- 2.5 Random Phasor Sums with a Finite Number of Equal-Length Components

2.6 Random Phasor Sums with a Nonuniform Distribution of Phases

- **3 First-Order Statistical Properties of Optical Speckle**
 - 0 4 D C 111 C 1 4

3.1	Definit	ion of Intensity	25
3.2	First-O	order Statistics of the Intensity and Phase	27
	3.2.1	Large number of random phasors	28
	3.2.2	Constant phasor plus a random phasor sum	30
	3.2.3	Finite number of equal-length phasors	34
	3.2.4	Finite number of random-length phasors	37
	3.2.5	Random number of random-length phasors	42
3.3	Sums	of Speckle Patterns	46
	3.3.1	Sums on an amplitude basis	46
	3.3.2	Sum of two independent speckle intensities	46
	3.3.3	Sum of N independent speckle intensities	50
	3.3.4	Sums of correlated speckle intensities	52
3.4	Partial	ly Developed Speckle	55
3.5	Speck	led Speckle, or Compound Speckle Statistics	59
	3.5.1	Speckle driven by a negative-exponential intensity distribution	59
	3.5.2	Speckle driven by a gamma intensity distribution	61

18

		3.5.3	Sums of independent speckle patterns driven by a gamma intensity distribution	62
4	High	er-Orde	r Statistical Properties of Speckle	65
	4.1	Multiva	ariate Gaussian Statistics	65
	4.2	Applica	ation to Speckle Fields	66
	4.3	Multidi	mensional Statistics of Speckle Amplitude, Phase, and	
		Intensi	ty	68
		4.3.1	The bivariate density function	69
		4.3.2	Joint density function of the amplitudes	71
		4.3.3	Joint density function of the phases	73
		4.3.4	Joint density function of the intensities	76
	4.4	Bivaria	te Statistics of a Linearly Polarized Speckle Pattern	78
	4.5	Speckl	le and Polarization	79
		4.5.1	The polarization ellipse	79
		4.5.2	The Stokes parameters and the Poincaré sphere	81
	4.6	Statisti	ics of the Stokes Parameters in a Fully Developed Speckle	
		Patterr	andom Phatter Sums	83
		4.6.1	Statistics of S ₀	83
		4.6.2	Statistics of S ₁	87
		4.6.3	Statistics of S ₂	87
		4.6.4	Statistics of S ₃	91
		4.6.5	Polarization speckle	93
	4.7	Statisti	ics of Integrated and Blurred Speckle	94
		4.7.1	Mean and variance of integrated speckle	95
		4.7.2	Approximate result for the probability density function of	100
			integrated intensity	100
		4.7.3	"Exact" result for the probability density function of integrated	400
			intensity	102
		4.7.4	Integration of partially polarized speckle patterns	108
	4.8	Statisti	ics of Derivatives of Speckle Intensity and Phase	110
		4.8.1	Background Devive times of encoded a share way divertiens in a speckle	110
		4.8.2	Derivatives of speckle phase: ray directions in a speckle	110
		100	pattern Derivetives of encelde intensity	110
		4.8.3	Derivatives of speckle intensity	110
	10	4.8.4	Level crossings of speckle patients	119
	4.9	Zeros	Conditions required for a zero of intensity to occur	122
		4.9.1	Broportion of specklo phase in the visipity of a zero of	125
		4.9.2	intoneity	122
		102	The density of vertices in fully developed encekle	125
		4.9.3	The density of vortices for fully developed speckle plus a	120
		4.3.4	coherent background	127
			concrent background	121

viii

5	Spati	al Structure of Speckle	129
	5.1	Autocorrelation Function and Power Spectrum of Speckle	129
		5.1.1 Free-space propagation geometry	129
		5.1.2 Imaging geometry	137
	5.2	Speckle Size in Depth	138
	5.3	Dependence of Speckle on Scatterer Microstructure	141
		5.3.1 Surface vs. volume scattering	141
		5.3.2 Effect of a finite correlation area of the scattered wave	142
		5.3.3 A regime where speckle size is independent of scattering	
		spot size	147
	5.4	Effects of Surface Microstructure on the Reflected Wave	149
		5.4.1 Correlation function of the reflected wave	151
		5.4.2 Illumination normal to the surface	153
	5.5	Effects of a Change of Illumination Angle in Free-Space Propagation	156
	5.6	Effect of a Change of Wavelength in Free-Space Propagation	158
	5.7	Simultaneous Changes of Illumination Angle and Wavelength	161
	5.8	Speckle in a Simple Imaging System: In-Focus Case	162
	5.9	Speckle in a Simple Imaging System: Out-of-Focus Cases	166
	5.10	Effects of Pupil Size and rms Roughness on Speckle Contrast	167
	5.11	Properties of Speckle Resulting from Volume Scattering	170
6	Optic	al Methods for Suppressing Speckle	175
	6.1	Polarization Diversity	176
	6.2	Temporal Averaging with a Moving Diffuser	177
79.		6.2.1 Background	177
	2	6.2.2 Smooth object	184
		6.2.3 Rough object	186
	6.3	Wavelength and Angle Diversity	188
		6.3.1 Free-space propagation: reflection geometry	189
		6.3.2 Free-space propagation: transmission geometry	199
		6.3.3 Imaging geometry	203
	6.4	Temporal and Spatial Coherence Reduction	205
90	3	6.4.1 Coherence concepts in optics	205
		6.4.2 Moving diffusers and coherence reduction	208
		6.4.3 Speckle suppression by reduction of temporal coherence	210
		6.4.4 Speckle suppression by reduction of spatial coherence	215
	6.5	Use of Temporal Coherence to Destroy Spatial Coherence	221
	6.6	Compounding Speckle Suppression Techniques	222
7	Spec	kle in Certain Imaging Applications	223
	7.1	Speckle in the Eye	223
	7.2	Speckle in Holography	226
		7.2.1 Principles of holography	226
	8C.4	7.2.2 Speckle suppression in holographic images	228

	7.3	Speckl	e in Optical Coherence Tomography	231
		7.3.1	Overview of the OCT imaging technique	231
		7.3.2	Analysis of OCT	232
		7.3.3	Speckle and speckle suppression in OCT	236
38	7.4	Speckl	e in Optical Projection Displays	240
		7.4.1	Anatomies of projection displays	241
		7.4.2	Speckle suppression in projection displays	244
		7.4.3	Polarization diversity	245
		7.4.4	A moving screen	246
		7.4.5	Wavelength diversity	248
		7.4.6	Angle diversity	249
		7.4.7	Overdesign of the projection optics	250
		7.4.8	Changing the diffuser projected onto the screen	252
		7.4.9	Specially designed screens	264
	7.5	Speckl	e in Projection Microlithography	266
		7.5.1	Coherence properties of excimer lasers	267
		7.5.2	Temporal speckle	268
		7.5.3	From exposure fluctuations to line position fluctuations	270
	7.6	Speckl	e in the Image of a "Smooth" Surface	272
		7.6.1	Symmetry of the spectral intensity in the focal plane	274
		7.6.2	Bright-field imaging	275
		7.6.3	Dark-field imaging	277
8	Spec	kle in C	Certain Nonimaging Applications	279
	8.1	Speckl	e in Multimode Fibers	279
		8.1.1	Modal noise in fibers	281
		8.1.2	Statistics of constrained speckle	283
		8.1.3	Frequency dependence of modal noise	287
	8.2	Effects	of Speckle on Optical Radar Performance	293
		8.2.1	Spatial correlation of the speckle returned from distant targets	294
		8.2.2	Speckle at low light levels	297
		8.2.3	Detection statistics: direct detection	300
		8.2.4	Detection statistics: heterodyne detection	305
		8.2.5	Comparison of direct detection and heterodyne detection	315
		8.2.6	Reduction of the effects of speckle in optical radar detection	318
	8.3	A Spe	ctrometer Based on Speckle	318
9	Spec	kle and	Metrology	321
	9.1	Speckl	le Photography	321
		9.1.1	In-plane displacement	323
		9.1.2	Simulation	325
		9.1.3	Properties of the spectra $I_k(\nu_X, \nu_Y)$	327
		9.1.4	Limitations on the amount of the motion (x_0, y_0)	330
		9.1.5	Analysis with multiple specklegram windows	331

х

 \mathcal{C}

		9.1.6 Object rotation	332
	9.2	Speckle Interferometry	333
		9.2.1 Systems that use photographic detection	333
		9.2.2 Electronic speckle pattern interferometry (ESPI)	337
		9.2.3 Speckle shearing interferometry	340
(9.3	From Fringe Patterns to Phase Maps	343
		9.3.1 The Fourier transform method	344
		9.3.2 Phase-shifting speckle interferometry	345
		9.3.3 Phase unwrapping	347
	9.4	Vibration Measurement Using Speckle	349
	9.5	Speckle and Surface Roughness Measurements	352
		9.5.1 RMS surface height and surface covariance area from	
		speckle contrast	353
		9.5.2 RMS surface height from two-wavelength decorrelation	354
		9.5.3 RMS surface height from two-angle decorrelation	355
		9.5.4 Surface-height standard deviation and covariance function	
		from measurement of the angular power spectrum	356
10 9	Snec	kle in Imaging Through the Atmosphere	359
10	10.1	Rockground	250
ma	10.1	Short and Long Exposure Doint Spread Eurotions	261
1.0	10.2	Long and Short Exposure Average Optical Transfer Eurotions	262
	10.5	Statistical Dranatics of the Short Evocute OTE and MTE	302
firs	10.4	Astronomical Speekle Interforemetry	304
	10.5	Astronomical Speckle Interferometry	370
· glas	5.1	10.5.1 Object miormation that is retrievable	370
		10.5.2 Results of a more complete analysis of the form of the	070
rep	10.6	The Cross Spectrum or Kney, Thempson Technique	3/3
	10.0	10.6.1 The group of the transfer function	374
	2130	10.6.1 The cross-spectrum transfer function	3/5
	10.7	The Dispertment Technismus	3//
	10.7	The Bispectrum Technique	379
		10.7.1 The dispectrum transfer function	380
	10.0	10.7.2 Recovering full object information from the bispectrum	381
	10.8	Speckle Correlography	382
App	bendi	x A Linear Transformations of Speckle Fields	385
App	oendi	x B Contrast of Partially Developed Speckle Intensity and Phase	389
Арр	endi	x C Calculations Leading to the Statistics of the Derivatives	
of l	ntens	sity and Phase	395
	C.1	The Correlation Matrix	395
1	C.2	Joint Density Function of the Derivatives of Phase	398
	C.3	Joint Density Function of the Derivatives of Intensity	399
	C.4	Parameters for Various Scattering Spot Shapes	400

xi

Appendix D Analysis of Wavelength and Angle Dependence of Speckle	403
D.1 Free-Space Geometry	403
D.2 Imaging Geometry	407
Appendix E Speckle Contrast When a Dynamic Diffuser is Projected	
onto a Random Screen	411
E.1 Random Phase Diffusers	411
E.2 Diffuser that Just Fills the Projection Optics	414
E.3 Diffuser that Overfills the Projection Optics	415
Appendix F Statistics of Constrained Speckle	417
Anneyding C. Comula Mathematica Dreamans for Cimulating Creakle	404

Append	lix G Sa	imple Mathematica Programs for Simulating Speckle	421
G.1	Speckle	e Simulation With Free-Space Propagation	421
G.2	Speckle	e Simulation With an Imaging Geometry	421
2.7355			
Referen	ces		423
Index			43
		e in the image of a "Smooth" Surface	
			8.01275
		10.5.2 Reads of a more completeaned stated their d	
		Detection statisticationstrateleanticaustoagaid art1. 1.1.01	
		Fielder ein die Pressen of State of State in this work and the state of the state o	
		x a Contrest of Partially Degolovell Specific Intensity an	
		x C Calculations Leading to the Statistics elition-Devices	dbrisge