Contents

Prologue

page 1

1

7

٠

 Hunting Strategies of Predators as Revealed in Field Studies of Great Tits
 1.1 Preamble

	1.2 Search Image Theory by Lukas Tinbergen	8
	1.3 Alternative Theory: Hunting by Profitability	11
	1.4 Profitability Curve	21
	1.5 Allotment of Hunting Time among	
	Different Sites	23
	1.6 Hunting by Profitability as Principle	25
2	The Paradox of Crypsis: Is it Effective against	
	Visual Predation?	26
3	Logistic Law of Population Growth: What Is It	
	Really?	31
	3.1 Preamble	31
	3.2 The Classical Logistic Equation	32
	3.3 Fundamental Nature of Population Processes	34
	3.4 Ecological Significance of the Differential	
	Equation: $dx/dt = xf(x)$	34
	3.5 Discrete-Time Processes	39
	3.6 Classical Logistic Model as Particular Case	
	of Model (3.10)	46
	3.7 Reinterpretations of Parameters ρ and K	48
	3.8 Structual Problem of the Common-Version	
	Logistic Model	50
	3.9 Final Remarks of Chapter	51
	Appendices	
	Appendix 3A: How to Solve a Differential Equation	
	in the Models (3.1)	52

.

x · Table of Contents

Appendix 3B: The Derivative $d(e^u)/du = e^u$ 55 Appendix 3C: The Derivative $d(\ln v)/dv \equiv 1/v, v > 0$ 56 Appendix 3D: The Anomaly in the Common Version Logistic Equation (3.3c) 56 Appendix 3E: Mathematical Attributes of the Verhulst Equation (3.3a) 56 **Reproduction Curves and Their Utilities** 58 4 4.1 Original Ideas 58 4.2 Drawing a Reproduction Curve 61 4.3 Generating the Population Series 61 4.4 Mathematical Roles that the Model Parameters Play 63 1 E Duella il D I i Oi

4.5	Problems with Population Size as a	
	Non-negative Quantity	66
4.6	Logarithmic Transformation of a	
	Reproduction Curve	68
4.7	An Application to Actual Data	71
4.8	Variation in Dynamical Pattern of the Model	
	Process (4.4b)	75
4.9	Examples of Variations in Dynamical Pattern	78
4.10	Difference between Discrete-Time and	
	Continuous-Time Processes	82
4.11	Ecological Feasibility of Variations in	
	Discrete-Time Processes	83
4.12	Endogenous and Exogenous Processes	85
4.13	Application of an Endogenous-Exogenous	
	Process Model to Wildlife Management	89
4.14	The Origins of the Myths of the Logistic Law	90
4.15	Final Remarks of Chapter	91

Appendices Appendix 4A: The Derivative of a Function Is a Measure of the Slope of the Curve Generated by the Function 92 Appendix 4B: The Derivatives of a Few Standard Functions 95 Appendix 4C: L'Hôpital's Rule 96 Appendix 4D: Prototype Curve and Its Translation 96 **Generalization of the Logistic Model** 98 5 5.1 Preamble 98 5.2 Negative Binomial Distribution 100

.

	5.3 Ecological Application of the Negative	
	Binomial Distribution	105
	5.4 A General Model of Intraspecific Competition	108
	5.5 Model (3.10) as a Particular Case of Model (5.12)	112
	5.6 Interpretation of the Hassell Model:	
	$r_t = x_{t+1}/x_t = r_m/(1 + ax_t)^b$	113
	5.7 One More Model to Examine	113
	Appendices	
	Appendix 5A: Why $0! = 1?$	115
	Appendix 5B: Why the Name 'Negative Binomial'?	115
	Appendix 5C: How to Calculate the Mean and	
	Variance of the Random Number m	
	in (5.4)	116
	Appendix 5D: Why Do the Terms jk^{j-1} Qr(j) in (5.6)	
	Vanish in the Limit $(j \rightarrow \infty)$?	118
	Appendix 5E: Convergence of the Sum $\{\Sigma[(h + j - 1)!/$	
	$h!(j-1)!](kq)^{j-1}$ to $(1-kq)^{-(h+1)}$	119
6	Scrample and Contact Compatition.	
U	What Is the Difference?	120
	6.1 Droomble	120
	6.2 Drawing Deproduction Curves Based	120
	on Model (5.12)	121
	6.3 Broader Interpretation of Parameter h	126
	6.4 In the Weirdland of a Negative Hit	128
	6.5 Nature of Competition	130
	6.6 What Determines Parameter h in Actual Processes?	132
	6.7 Scramble and Contest as Elements	
	of Competition	136
	6.8 Concluding Remarks of Chapter	140
	Appendices	
	Appendix 6A: The Logarithm of a Negative Real	
	Number is a Complex Number	140
	Appendix 6B: How to Estimate Parameters (Rm, h, c/h)	
	to Fit Model (6.1a) to the Observed	
	Reproduction Curve in Figure 6.3a	143
7	Regulation of Populations: Its Myths and	
	Real Nature	145
	7.1 A Brief History	145
	7.2 Biological Population Processes As	
	Stochastic Processes	146

.

.

170

xii · Table of Contents

7.3	Defining Population Persistence	150
7.4	Investigations into Mechanisms for	
	Persistent State	151
7.5	Density-Dependent Processes under	
	Exogenous Influences	153
7.6	Density-Independent Processes	154
7.7	Algebra of Stipulation (7.3) for	
	Population Persistence	158
7.8	Random Walk As Unregulated Processes	161
7.9	Density-Dependent Regulation	162
7.10	Precise Nature of Density-Dependent	
	Regulation	167
7.11	Density-Independent Regulation	169
7.12	Logical Problem in Climatic-Control Theories	170
7.13	Myth of Density-Dependent Regulation	174
7.14	Concluding Remarks of Chapter	177
App	pendices	
App	endix 7A: Rules of Operations on the Expectations	
	Used in the Present Chapter	177
App	endix 7B: Derivation of Relationship (7.5)	178
App	endix 7C: Calculation of an Autocovariance	
	Function (ACVF)	180
8 Pre	dator-Prey Interaction Processes	181
8.1	Preamble	181
8.2	Formulation of Endogenous Models of the	
	Interaction Processes	181
8.3	Simulation of the Dynamics of	
	Predator-Prey Interactions	186
8.4	Variation in Dynamical Patterns	190
8.5	Effects of Random Exogenous Influences	197

8.5 Effects of Random Exogenous Influences
8.6 Reproduction Surfaces of a Predator–Prey Process
8.7 Revealing Conditional Reproduction Curve in Observed Series
8.8 Problems Inherent to Earlier Models
8.9 Interactions between Predator Complex and Prey Complex

7.1 A Brief Mishinghi and all in an in the second state of the

206

212

217

219

	Appendices	
	Appendix 8A: Ecological Mechanism Underlying the	
	Equation $q(x_t) = [1 - \exp(-bx_t)]$	
	in (8.2)	221
	Appendix 8B: How to Find the Equilibrium Levels	
	of the X and Y Series in the	
	Simultaneous Equations (8.4)	222
	Appendix 8C: How to Generate Correlated Series	
	of Random Numbers	223
0		225
9	Interspecific Competition Processes	225
	9.1 Preamble	225
	9.2 Formulation of Competition Model	225
	9.3 Simulations	227
	9.4 Criteria for Coexistence and Elimination	228
	9.5 Reconsideration of the 'Competitive	
	Exclusion Principle'	245
	9.6 Alternative Ways of Viewing Nature	248
	9.7 Struggle for Existence vs Optimization	
	of Profitability	249
	Appendices	
	Appendix 9A: How to Calculate x^{**} and y^{**}	250
	Appendix 9B: Infeasibility of Category (v)	
	in Table 9.1, Section 9.4	250
	Appendix 9C: How to Incorporate the Effect of	
	Random Exogenous Influences in	
	the Model	251
10	Observations, Analyses, and Interpretations:	
	A Personal View through the Spruce	
	Budworm Studies	252
	10.1 An Outline of the Spruce Budworm Studies	253
	10.2 Earlier View of Outbreaks	254
	10.3 Thoughts on the Basic Processes of	
	Ecological Studies	267
	10.4 Concluding Remarks in the Quest for Certitude	270
	References	271
	Index	273
		215

.