Contents

1 Introduction to open ecosystems: a global anomaly and a local example 1.1 Introduction

2.

1.2	Fynbos shrublands: an example	2
	1.2.1 Climate does not explain the absence of forests	2
	1.2.2 The dominance of fynbos is not a consequence of deforestation	4
	1.2.3 Forests are not excluded from fynbos by low nutrient soils	4
	1.2.4 Fire and the origin and maintenance of open ecosystems	5
1.3	Open ecosystems in wider context	6
1.4	Geographic scope and terminological difficulties	9
1.5	History of research	10
	1.5.1 Consumer control: fire and open ecosystems	10
	1.5.2 Consumer control: herbivores and open ecosystems	10
	1.5.3 New developments	11
1.6	Book structure	12
2 The	pattern of open ecosystems and the climates in which they occur	13
2.1	Introduction	13
2.2	Climate explanations for the distribution of biomes	13
	2.2.1 Examples of climate-vegetation correlations	14
2.3	Climate zones where ecosystems are uncertain	15
2.4	Tropical and subtropical regions	16
2.5	Temperate and boreal regions	20
	2.5.1 Local studies	20
	2.5.2 Mapping the spatial extent of temperate and boreal open ecosystems	20
	2.5.3 Remote sensing of temperate and boreal trees	21
2.6	Beyond correlations	22
	2.6.1 Dynamic Global Vegetation Models (DGVMs and DVMs)	22
	2.6.2 Southern African case study	23
	2.6.3 Simulating world vegetation	25
2.7	Explanations for uncertain ecosystems	25
	2.7.1 Are uncertain ecosystems merely the product of deforestation?	25
3 Unce	ertain ecosystems: the conceptual framework	27
3.1	Introduction	27
3.2	The carrying capacity for trees	27

viii CONTENTS

3.3	Explanations for open, low biomass ecosystems:	
	Bottom-up factors	28
	3.3.1 Climate extremes	28
	3.3.2 Hostile soils	28
	3.3.3 Physical disturbance	30
3.4	Anthropogenic disturbance and open, low biomass ecosystems	30
3.5	Consumers and open, low biomass ecosystems	31
	3.5.1 The green world hypothesis	31
	3.5.2 Consumers that escape predation	31
	3.5.3 Fire as a generalist herbivore	33
	3.5.4 A multi-coloured world	33
3.6	Integrating top-down and bottom-up processes	35
3.7	Open ecosystems and succession mechanisms	36
3.8	Alternative stable states	36
	3.8.1 Testing ASS	37
	3.8.2 Alternative hypotheses	38
	3.8.3 Experiments	39
	3.8.4 Stability	40
	3.8.5 Patterns from space	40
3.9	Implications of ASS theory	41
3.10	Summary	42
4 The m		12
4 me na	ature of open ecosystems	43
4.1	Introduction	43
4.2	Diversity, endemism, and the antiquity of open ecosystems	43
4.3	Tropical grassy biomes	44
	4.3.1 The grasslands of Madagascar: anthropogenic or ancient?	44
	4.3.2 Southern grasslands of the USA	45
4.4	North temperate floras	45
4.5	A global perspective: open ecosystem biodiversity hotspots	46
	4.5.1 Forests versus savannas: an intercontinental comparison	47
4.6	The diversity of open ecosystems	47
4.7	Functional traits in a trophically structured world: a framework	48
	4.7.1 Green versus black and brown world traits (closed versus open	
	ecosystems)	49
	4.7.2 Black world traits	49
	4.7.3 Grass-fuelled surface fire regimes	51
	4.7.4 Underground trees: geoxylic suffrutices	54
4.8	Crown fire systems	54
4.9	Old-growth grasslands	56
4.10	Brown world traits: herbivory responses	58
	4.10.1 Woody plants	58
	4.10.2 Herbaceous plants	62
4.11	Open habitat faunas	62
	4.11.1 Species richness	63
	4.11.2 Forest/open ecosystem mosaics	64

		4.11.3 Functional traits	65
		4.11.4 Mammals	65
	4.12	Summary	66
5 T	he o	rigins of closed and open ecosystems: Fossils and phylogenies	67
	5.1	Introduction	67
	5.2	Exploring the past	67
		5.2.1 Fossils	67
		5.2.2 Phylogenies	68
	5.3	The early origin of forests	68
	5.4	The Cretaceous and the emergence of the flowering plants	69
		5.4.1 The attributes of early angiosperms	69
		5.4.2 Dinosaurs and the spread of the angiosperms in the Cretaceous	70
		5.4.3 Fire and the spread of angiosperms in the Cretaceous	70
		5.4.4 Phylogenetic evidence for fire-adaptive traits in the Cretaceous	71
	5.5	The first angiosperm-dominated forests	73
	5.6	The Cenozoic: the age of mammals	73
	5.7	The origin of grasslands: another angiosperm revolution	74
	5.8	The origin of savannas	74
		5.8.1 C_4 photosynthesis and atmospheric CO_2	74
		5.8.2 Climate fire CO interactions	75
		5.8.4 The role of consumers: mammale	77
*	59	Summary	78
	0.7	5.9.1 The relevance of geological history of uncertain ecosystems	81
6 S	oils	and open ecosystems	82
~	61	Introduction	00
2	0.1	611 Hypotheses on the role of soils in chaning access toms	02
2-	62	Physical controls on forest development	83
	0.2	621 Waterlogging	84
		6.2.2. Maximum rooting depth as a global constraint on trees	85
	6.3	Chemical controls on forest development	86
	0.0	6.3.1 Correlative studies	86
		6.3.2 Plant-soil feedbacks	87
	6.4	Sampling soils for ecological studies	91
		6.4.1 Which nutrients?	91
	6.5	Why should nutrients influence forest/open ecosystem distribution?	92
		6.5.1 Hypotheses for soil nutrient dependence	92
		6.5.2 Nutrient constraints on tree growth	92
		6.5.3 Nutrient/fire interactions	93
	6.6	Summary of soil effects	93
7 F	ire a	nd open ecosystems	97
	7.1	Introduction	97
	7.2	Hypotheses on the role of fire in shaping ecosystems	.98

1

-

CONTENTS X

7.4 Patterns of global fires: pyromes7.4.1 Convergence and divergence of pyromes	102
7.4.1 Convergence and divergence of pyromes	100
	102
7.5 Evidence for fire-maintained open ecosystems	107
7.5.1 Patterns	107
7.5.2 Manipulative studies	107
7.5.3 Fire suppression in tropical and subtropical grassy ecosystems	107
7.5.4 Fire suppression in woody and grassy temperate ecosystems	111
7.6 Evidence for fire-maintained open ecosystems: adding fire	112
7.7 Alternative stable states	113
7.7.1 Pyrophilic versus pyrophobic ecosystems	113
7.7.2 Feedbacks maintaining states: flammability	114
7.7.3 Feedbacks maintaining states: soils	115
7.7.4 Stability of states	115
7.7.5 Regime shifts	117
7.8 Life at the edge	119
7.9 Summary	119
8 Vertebrate herbivory and open ecosystems	121
8.1 Introduction	121
8.2 Overgrazing, degradation, and other value-laden terms	122
8.3 Examples of herbivore impacts	122
8.3.1 Exclosure experiments: temperate and boreal forests	123
8.3.2 Exclosure experiments: savannas	124
8.3.3 Natural experiments	127
8.4 Why herbivores impact plant populations	129
8.4.1 Factors influencing stem loss	130
8.4.2 Mechanical damage	131
8.4.3 Simulation models: putting herbivores into dynamic vegetation	
models (DVMs)	131
8.5 Heterogeneity in herbivore impacts	133
8.5.1 Which herbivores?	133
8.5.2 Which plants?	133
8.6 Examples of brown world	134
8.7 Alternative states and regime shifts	136
8.7.1 Herbivory and fire as competing consumers	136
8.7.2 Stability of states and regime shifts: paleoecological evidence	138
8.8 Summary and conclusion	139
9 The future of open ecosystems	141
9.1 The end of savannas?	141
9.1.1 CO_2 effects	141
9.1.2 Woody encroachment	142
9.2 The future of consumers that maintain open ecosystems	144
9.2.1 The end of savannas? Fire management	144
9.2.2 The end of savannas? The future of the megafauna	145

- E

CONTENTS xi

	9.2.3 The expansion of open woody ecosystems? Megafires	
	and their control	146
	9.2.4 Large fires and land-use change	147
9.3	Invasives and open ecosystems	148
9.4	Habitat transformation	149
9.5	Carbon sequestration, afforestation, and reforestation	149
	9.5.1 Global tree-planting programmes	149
	9.5.2 Will afforestation of open ecosystems cool the world?	151
9.6	Conclusions	152
foron	rec	155
lov		100
ICA		175

Re

Ind

